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1-1 Introduction 

Chapter 1 

Axial Stress 

Bearing Stress 

Torsional Stress 

Introduction- Concept of Stress 

INTRODUCTION 
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A Review of Statics 
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1-2 Introduction 

Shear Stress 
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Deflection of Beams 
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1-3 Equilibrium of a Particle 

Equilibrium of a Particle 

F1 

F2 
F3 

F4 

F1 
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F3 

F4 

Newton's First Law 
If the resultant force acting on a particle is zero, the particle will 
remain at rest (if originally at rest) or will move with constant 
speed in a straight line (if originally in motion). 
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Example 
The loads are supported by two rods 
AB and BC as shown.  Find the 
tension in each rod.  Units: N. 

Magnitude x component y component

100 N

  75 N

60° 

3

4

5

A
C

B
60° 

90° 
100 

75 
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Example 
Determine the forces in AB and BC.  
Units:  Lb, in. 

C A 

B 

45 30 

60 

500 
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Example 
Determine the forces in cables AB and BC 
due to the 25 lb traffic light.  Units:  Lb. 

A 
B 

C 
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12 12 

1 
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Example
Determine the forces in wires AB and BC.  The 
sphere weighs 100 lbs.  Units: Lb, in.

300

A
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1-8 Equilibrium of Rigid Bodies 

Equilibrium of Rigid Bodies 
 
A particle remains at rest or continues to move in a straight line with 
uniform velocity if the resultant forces acting on it are zero, in other 
words: 
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Example
Determine the reactions at D and the 
tension in BE.  The wire connected at A 
and C is continuous.   
Units: N, mm.

A
B C D
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Example 
The cable stays AB and AD help 
support pole AC.  Knowing that the 
tension is 140 lb in AB and 40 lb in 
AD, determine the reactions at C. 
Units: Lb, ft. 

10 

8 6 

A

B C D
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Example 
Determine the reactions at 
supports A and B. 
Units: Lb, ft. 

5 3 
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Example 
Determine the reactions at A 
and B.  Units: Lb, ft. 

M= 500 200 60° 
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Example 
Determine the forces on member 
ABC.  The radius of the small 
pulley is 2.5" and the larger is 5”. 
Units: Lb, ft. 
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Example 
Determine the forces on 
member ABCD due to P= 500 lb 
and M= 700 ft-lb.  Units: Lb, ft. 
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Example 
Determine the internal forces at 
point J.  The radius of the small 
pulley is 2.5" and the larger is 5”. 
Units: Lb, ft. 
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A

Recall from a previous solution: 
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Example 
Determine the internal forces at 
point J due to P= 500 lb and  
M= 700 ft-lb.  Units: Lb, ft. 
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P 

NORMAL STRESS 
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W 

60° 

3

4

5

A

C

B

EXAMPLE 
The 80-kg lamp is supported by two 
rods AB and BC as shown.  If AB has a 
diameter of 10 mm and BC has a 
diameter of 8 mm, determine which rod 
is subjected to the greater normal  
stress? 
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P 

2.0 

1.5 

1.5 

Example 
A strut and cable assembly ABC supports 
a vertical load P= 1.8 kN.  The cable has 
an effective cross-sectional area of 
12000 sq. mm and the strut has an area 
of 25000 sq. mm.  Calculate the normal 
stress in the cable and strut, and indicate 
whether they are in tension or 
compression.  Units: m 

A

C

B
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Example 
Bar AB has a cross-section of .25"x4" and CD is .60"x4".  With a load 
of 2-k at the end, what is the axial stress in link AB and CD.   
Note:  The units of “k” means 1000 lbs, often referred to as “kips”. 
Units: K, ft. 
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STRESSES IN CONNECTIONS 
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1-22 Shear Stresses in Bolts 

SHEAR STRESSES IN BOLTS 
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1-23 Numerical Accuracy 

NUMERICAL ACCURACY
Numerical accuracy depends on:
     -accuracy of the given data

     -the accuracy of the computations

Example
I want to measure the area of my house and I'm so cheap I can't 
afford a tape measure.  But my foot is approximately 1 foot (no pun 
intended) long.  So I measure the length and width of the house 
accordingly (47.5 by 26.5 foot lengths).  Find the area.

Trial and Error Solutions
Example
Find x given:  0=73.6 - 100sin(x) - 45cos(x)
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Example 
A beam AB is supported by a strut CD and carries a load P= 2500 lb.  
The strut, which consists of two bars, is connected to the beam by a 
bolt passing through each of the bars at joint C.  (a) If the allowable 
average shear stress in the bolt is 14,000 psi, what is the minimum 
required diameter d of the bolt?  (b) If the allowable bearing stress on 
the strut is 20 ksi and the thickness of the strut is 0.25 inches, find the 
minimum diameter.  Units: Lbs, ft. 

3 P 

4 4 

A C 

D 

B 
a 

a 

Section a-a 
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Example 
Bar AB has a cross-section of .25"x4".  (a) With a load of 2-k at the 
end, what is the maximum bolt size at B based on a maximum net 
stress of 24,000 psi in member AB.  (b) If the bolt has a shear stress 
allowable of 21,600 psi and a bearing stress allowable of 32,400 psi, 
find the minimum bolt size at joint B.  Note:  The units of “k” means 
1000 lbs, often referred to as “kips”.  Units: Lbs, ft. 

5 

A 

B C

D

P 

6 6.5 
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B

C
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Recall from a previous solution: 
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STRESSES ON INCLINED SECTIONS 
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sin cosxθ τ σ θ θ = − 

2cosxθ σ σ θ = max @ 0xσ σ θ = = ° 

max @ 45
2
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Example 
A circular steel rod is to carry a tensile load P= 140 kN.  The allowable 
stresses in tension and shear are 120 MPa and  55 MPa, respectively.  
What is the minimum required diameter d of the rod? 

P P 
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Example 
Two wooden rectangular members with a cross section of 3"x6" are 
joined by the simple glued 40° scarf splice shown.  Knowing that the 
maximum allowable shearing stress in the glue splice is 90 psi and 120 
psi in tension, determine the largest load P which can be safely applied. 
Units: Lbs, in. 

P 

P 

40°

6 

3 
P 



1-29 Design Considerations 

DESIGN CONSIDERATIONS 

Ultimate Strength 

Factor of Safety 

ultimate loadFactor of safety= F.S.= 
allowable load

ultimate stressFactor of safety= F.S.= 
allowable stress

U
U

P
A

σ = 

Determination:
-Variations that may occur in the properties of the member under 
considerations.

-The number of loading cycles that may be expected during the life 
of the structure or machine.

-The type of loadings that are planned for the future in the design, 
or that may occur in the future.

-The type of failure that may occur.

-Uncertainty due to methods of analysis.

-Deterioration that may occur in the future because of poor mainte-
ance or because of unpreventable natural causes.

-The importance of a given member to the integrity of the whole 
structure.
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Example 
Three steel bolts are to be used to attach the steel plate shown to a 
wooded beam.  Knowing that the plate will support a 24-kip load, that the 
ultimate shearing stress for the bolt is 52 ksi, and a factor of safety of 
3.37 is desired, determine the required diameter of the bolt. 

P 



1-31   

Example 
A 5/8” bolt is used at C to connect to the wooden member BC that 
has a cross-sectional area of 5.25 in².  Knowing that the utimate 
shearing stress is 58 ksi for the bolt and that the ultimate normal 
stress is 7.2 ksi for member BC, determine the allowable load P if an 
overall factor of safety of 3.0 is desired.  Units: Kips, in. 

P 

60° 

A B 

C 

10 

30 

10 
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SUMMARY 

sin cosxθ τ σ θ θ = − 
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2-1 Introduction to Stress and Strain: Axial Loading 

Chapter 2 
Stress and Strain- Axial Loading 

INTRODUCTION 
Stress and Strain 

Repeated Loadings; Fatigue 

Deformation of Members Under Axial Loading 

Statically Indeterminate Problems 

Temperature Effects 
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2-2 Introduction to Stress and Strain: Axial Loading 

Saint-Venants Principle 

Stress Concentrations 

Shearing Strain 

Poisson’s Ratio 

Multiaxial Loading; Generalized Hooke’s Law
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2-3 Normal Strain Under Axial Loading 

NORMAL STRAIN UNDER AXIAL LOADING 
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2-4 Stress-Strain Diagrams 

STRESS-STRAIN DIAGRAMS 
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ε 

σ 

ε 

P P 

Low-carbon steel Aluminum Alloy 

True stess-strain diagram 
(ductile material) 
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2-5 Repeated Loadings; Fatigue 

REPEATED LOADINGS; FATIGUE 

σ 

Number of repeated cycles 

ENDURANCE LIMIT- The stress for which 
failure does not occur, even for an indefi-
nitely large number of loadings. 

FATIGUE LIMIT- The stress corresponding 
to failure after a specified number of loading 
cycles, such as 500 million.

Steel 

Al 
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EXAMPLE 
A 5 kN force is applied to a 25 m steel wire.  Knowing that E= 200 GPa  
and the wire stretches 19 mm, determine the (a) diameter of the wire, 
(b) the corresponding normal stress.  
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EXAMPLE 
A square aluminum bar should not stretch more than 1.6 mm.  
Knowing that E= 70 GPa and the allowable tensile strength is 120 
MPa, determine (a) the maximum allowable length of the bar, (b) the 
required dimensions of the cross section if a tensile load of 32 kN is 
applied. 
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EXAMPLE 
The 5 mm diameter steel wire BC has 
an E value of 200 GPa.  If the 
maximum normal stress in the wire is 
not to exceed 185 MPa and an 
elongation of 6 mm, find the applied 
load P. 
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P 
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B 
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2-9 Deformation of Members Under Axial Loadings 

DEFORMATIONS OF MEMBERS UNDER AXIAL LOADINGS 
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A B C 
58 

1.2 0.8 

EXAMPLE 
Knowing that rod AB has a diameter of 45 mm, determine the diameter 
for BC for which the displacement of point C will be 3 mm.  E= 105 
GPa.  Units: kN, m. 
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EXAMPLE
The 3” diameter rod AB is made of copper 
(E= 17,000 ksi) and BC is made with 
aluminum (E= 10,000 ksi).  Determine the 
diameter of rod BC so that the displacement 
of C is 0.  Units: lbs, in.

1500 

36 

42 

A 

B 

C 

6000 
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Example 
Determine the displacement at the end of the rod at point C.  The 
brass pipe section AB has an outside diameter of 75 mm and 
thickness of 4 mm.  The steel rod is attached to a rigid plate on the 
top of the pipe.  The steel rod BC has a diameter of 10 mm. 
E (steel)= 200 GPa and E (brass)= 105 GPa.  Units: kN, m. 

2 

1 

60 

A 

B 
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Example 
The two steel bar segments, AB and BD, have 
cross-sectional areas of 2 and 5 in², 
respectively.  At C a rigid thin plate is installed.  
Determine the vertical displacement of A. 
E= 29000 ksi.  Units: kips, in. 

25 25 

1 1 

9 9 

25 

1 1 

12 

24 

30 

25 

1 1 

9 9 

A 

B 

C 
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Example 
Post AC is made of steel and has a diameter of 18 mm, and BD is 
made of copper and has a diameter of 42 mm.  Determine the 
displacement of point E on the rigid beam AB.  E(steel)= 200 GPa, 
E(copper)= 120 GPa.  Units: mm, kN 

60 
1000 

4000 

2200 

A B 

C D 
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1000 

4000 

A B E 
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Example 
Two steel bars are pin-connected to a rigid member.  Determine the 
location where the 60 kN force should be applied so that the rigid 
member AC remains horizontal .  Bar AB has a cross-sectional area of 
15 mm², and bar CD has a cross-sectional area of 25 mm².  E(steel)= 
200 GPa.   Units: kN, mm. 

60 

D 

A 

B 

C 

1500 

2000 

2100 

x 
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Example 
The horizontal rigid beam AB rests on the two short springs with the 
same length.  The spring at A has stiffness of 250 kN/m and the spring 
at B has a stiffness of 150 kN/m.  Determine the displacement under 
the load.   Units: kN, mm. 3.7 220 

A B 

900 

C 

A B 

900 

C 



2-17 Statically Indeterminate Problems 

STATICALLY INDETERMINATE PROBLEMS 

a 

b 

L 
P P 

A 

B 
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EXAMPLE 
The steel rod has a diameter of 7 mm.  It is attached to the fixed wall at 
A, and before it is loaded there is a 1 mm gap between the wall at C 
and the rod.  Neglecting the collar at B, find the reactions at A and C. 
E (steel)= 200 GPa.  Units: kN, m. 

A 
B 

0.6 

C 
18 

1.0 

A 
B 18 

A 
B 
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Example 
The assembly ABCD is welded to the wall at A and D.  The steel rod 
ABC has a diameter of 11 mm and the copper rod CD has a diameter 
of 7 mm.  A thin rigid flange is placed at B.  Determine the 
displacement of point B.  E (steel)= 200 GPa, E (copper)= 120 GPa.  
Units: kN, m. A B C 

15 

1.2 0.8 

20 

20 

D 

0.5 

A B C D 

A B C 
15 

20 
D 

20 
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Example 
The three steel bars are pin-connected to a rigid member.  Determine 
the force developed in each bar.  Bars AB and CD each have a cross- 
sectional area of 15 mm², and bar EF has a cross-sectional area of  
25 mm².  E(steel)= 200 GPa.   Units: kN, mm. 

60 

D 

E A 

B 

C 

F 

1500 

2000 

1400 600 

1200 

600 

2000 

A E C 
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Example 
The square column has an outer shell of brass and and interior core of 
steel.  Find the force required to create a shortening of 0.20 mm. 
E (brass)= 105 GPa, E (steel)= 200 GPa.  Units: N, mm. P 

500 

Column 
cross-section 

5 typ 

50 
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Example 
A copper bar is placed between two identical steel bars.  
Determine "h" in order for the copper to carry half of the 
total load.  E (copper)= 120 GPa, E (steel)= 200 GPa. 
Units: N, mm. 

500 

100 

20 

h h 
Column 

cross-section 

P 
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Example 
A brass bolt with a diameter of 0.375" is fitted inside a 7/8" diameter 
steel tube with a wall thickness of 1/8".  After the nut has been 
snugged, it is tightened 1/4 turn.  The bolt is single threaded and has 
a pitch of 0.1".  Determine the normal stress in the bolt and the tube. 
E (brass)= 15,000 ksi and E (steel)= 29,000 ksi.  Units: kips (k), in. 

20 
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Example 
The rigid steel beam is pin-connected at A and to two 6 mm diameter 
steel wires.  Determine the force developed in each wire. 
E(steel)= 200 GPa.  Units: kN, mm. 

500 

1700 

F D A 

60 

D B 

600 1100 

A 

C 

E 

500 

1000 
1300 

F 
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PROBLEMS INVOLVING TEMPERATURE CHANGE 

A B 

L 

A B 

L δ 
( )T T Lδ α = Δ 
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Example 
The steel rod AB has a diameter of 11 mm and the copper rod BC has 
a diameter of 7 mm.  Determine the displacement of point C if the 
assembly is subjected to a temperature increase of 50°C. 
Units: m. 
Copper: α= 17E-6/ºC 
Steel: α= 11.7E-6º/C 

A B C 

1.2 0.8 
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Example 
The steel rod shown is subjected to a temperature increase of 60˚F.  
Calculate the reactions at the supports and the stress in the bar.   
E(steel)= 29,000 ksi, α= 0.0000065/°F, area= 4 sq. in.  Units: k (kips), 

L 

A 

B 
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Example 
A solid steel rod S is placed inside a copper pipe C having the same 
length.  The coefficient of thermal expansion of copper is larger than 
the coefficient  of steel.  After being assembled, the cylinder and tube 
are compressed between two rigid plates by forces P.  Obtain a 
formula for the increase in temperature that will cause all of the load to 
be carried by the copper tube.  Units: k (kips), in. 

C C 

P 

P 

S 
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Cross section

Example
The 2.5" diameter aluminum shell is completely bonded to the 1" 
diameter brass core and is unstressed at 70°F.  Determine the stress 
in each if the temperature is raised to 170°F.
Brass: E= 15,000 ksi,  α= 11.6E-6/°F
Aluminum: E= 10,600 ksi, α= 12.9E-6/°F
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Example 
The square column has an outer shell of brass and inner core of steel.  
Determine the largest allowable temperature increase if the stress in 
the steel is not to exceed 55 MPa.  Units: mm. 
E (brass)= 105 GPa, α= 20.9E-6/°C 
E (steel)= 200 GPa, α= 11.7E-6/°C 

500 

Column 
cross-section 

5 typ 

50 



2-32  

Example 
The steel rod AB has a diameter of 11 mm and the copper rod BC has 
a diameter of 7 mm.  Determine the reactions if the assembly is 
subjected to a temperature increase of 50°C. 
Units: kN, m. 
E (copper)= 120 GPa, α= 17E-6/°C 
E (steel)= 200 GPa, α= 11.7E-6/°C 

A B C 

1.2 0.8 

A B C 

A B C 
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POISSON’S RATIO 

P 

P 

lateral strain
axial strain

ν = − 

x
y z E

νσ ε ε = = − 
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MULTIAXIAL LOADING; GENERALIZED HOOKE’S LAW 

xσ 

yσ 

yσ 

xσ 

zσ 
yx z

x

yx z
y

yx z
z

E E E

E E E

E E E

νσ σ νσ ε 

σ νσ νσ ε 

νσ νσ σ ε 

= + − − 

= − + − 

= − − + 



2-35 Shearing Strain 

SHEARING STRAIN 

xσ 

yσ 

yσ 

xσ 

zσ 

xy xy

yz yz

zx zx

G
G
G

τ γ 
τ γ 
τ γ 

= 
= 
= 



2-36 Saint-Venant’s Principle 

SAINT-VENANT’S PRINCIPLE 

P P P P 

P 

P 

P 



2-37 Stress Concentrations 

STRESS CONCENTRATIONS 

P P P P 

P P 

P 

P 

P P D 

r 

1.0 

2.0 

3.0 

K 

0.2 0.4 0.6 
r/(D-2r) 

P P 
D d 

r 

K 

1.0 

2.0 

3.0 

0 0.10 0.20 0.30 
r/d 

D/d 

1.2 
1.3 

1.5 

1.1 

2.0 

max

ave

K σ 
σ 

= 

W.D. Pilkey, Peterson’s Stress Concentration Factors, 2nd ed., John Wiley and Sons, New York, 1997 
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EXAMPLE 
For the 5 mm thick bar, determine the maximum normal stress for hole 
diameters 12 mm and 20 mm.  Units: kN, mm. 

2.5 2.5 
60 

P P D 

r 

1.0 

2.0 

3.0 

K 

0.2 0.4 0.6 
r/(D-2r) 

0 
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EXAMPLE 
For the 5 mm thick bar, determine the maximum normal stress for fillet 
radii of 6 mm and 10 mm.  Units: kN, mm. 

2.5 2.5 
60 40 

P P 
D d 

r 

K 

1.0 

2.0 

3.0 

0 0.10 0.20 0.30 
r/d 

D/d 

1.2 
1.3 

1.5 

1.1 

2.0 
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SUMMARY 
Stress and Strain 

Repeated Loadings; Fatigue 

Deformation of Members Under Axial Loading 

Statically Indeterminate Problems 

Temperature Effects 

σ 

ε 

σ 

CYCLES 

A B C 
58 

1.2 0.8 

100T CΔ = ° 

A B C 58 

1.2 0.8 

A B C 

1.2 0.8 

Eσ ε = 

ENDURANCE LIMIT- The stress for which 
failure does not occur, even for an indefi-
nitely large number of loadings. 

FATIGUE LIMIT- The stress corresponding 
to failure after a specified number of loading 
cycles, such as 500 million.

PL
AE

δ = 

( )T T Lδ α = Δ 
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Saint-Venants Principle 

Stress Concentrations 

Shearing Strain 

Poisson’s Ratio 

Multiaxial Loading; Generalized Hooke’s Law

P 

P 

xσ 

yσ 

yσ 

xσ 

zσ 

P P P P 

P P P P 

xσ 

yσ 

yσ 

xσ 

zσ 

yx z
x

yx z
y

yx z
z

E E E

E E E

E E E

νσ σ νσ ε 

σ νσ νσ ε 

νσ νσ σ ε 

= + − − 

= − + − 

= − − + 

xy xy

yz yz

zx zx

G
G
G

τ γ 
τ γ 
τ γ 

= 
= 
= 

lateral strain
axial strain

ν = − 

max

ave

K σ 
σ 

= 



3-1 Introduction 

Chapter 3 
Torsion 

INTRODUCTION 

Stresses in the Elastic Range 

Angle of Twist in the Elastic Range 

Statically Indeterminate Shafts 

14 

6 

A B 
C

1.2 0.8 

3 



3-2 Introduction 

Stress Concentrations in Circular Shafts 

Thin-Walled Hollow Shafts 

Design of Transmission Shafts 

T 



3-3 Stresses in the Elastic Range 

STRESSES IN THE ELASTIC RANGE 

max
p

Tr Tc
I J

τ = = 

p

T T
I J
ρ ρ τ = = 

4 4

2 32p
r dJ I π π 

= = = 
4 4( )

32p o iJ I d dπ 
= = − 

o ρ 

τ 

c 

o ρ 

τ 



3-4 Stresses on Inclined Sections 

STRESSES ON INCLINED SECTIONS 

max
Tc
J

σ τ = = 

T T 

T 

T 

Failure due to shear stress. 

Failure due to normal stress. 
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Example 
A copper coupling (BC) is used to connect two steel shafts (AB and 
CD).  The diameter of the steel shaft is 25 mm, determine the outside 
diameter of the coupling so that the shear stress in it is half that of the 
steel shaft. 
Units: kN, m. A B C D 
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Example 
Shafts AB and CD have an outside diameter of 0.75".  Shaft BC has an 
outside diameter of 1.25".  Determine the largest stress in ABCD. 
Units: in-lb. 

A C 
D 1200 500 700 

B 

1200 
D 

C 
D 1200 500 

C 
D 1200 500 700 

B 
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Example 
The sign is subjected to a wind force of 5000 lb at it’s centroid 84" from 
the center of the column.  The column has an outside diameter of 10" 
and a wall thickness of 0.125".  Considering only this force, determine 
the torsional shear stress at A.  Units: in. 

ENGINEERING 
WAY 

NEXT EXIT 

A 

84 



3-8 Angle of Twist in the Elastic Range 

ANGLE OF TWIST IN THE ELASTIC RANGE 

TL
GJ

φ = 

T T 
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Example 
Shaft AB has a diameter of 60 mm.  Determine the diameter of BC for 
which the displacement of point C will be 1.5°.  G= 38 GPa. 
Units: N•m, m. 

A B 
C 400 

1.2 0.8 
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Example 
The steel shaft AB has a diameter of 60 mm and the copper shaft BC 
has a diameter of 45 mm.  Determine the rotation of points B and C.   
Units: N•m, m. 
G (steel)= 77.2 GPa 
G (copper)= 44 GPa. A B 

C 400 

1.2 0.8 

1000 

C 400 

B 
C 400 1000 
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Example 
The copper shaft AB has a diameter of 1" and the steel shaft CD has a 
diameter of 1.75".  The two shafts are connected by a 4" diameter gear 
at B and a 10" diameter gear at C.  Point D is welded to the wall.  
Determine the rotation of point A.  Units: lb•ft, in. 
G (steel)= 11.2E6 psi 
G (copper)= 6.4E6 psi 

B 

C 

B 

C 

A B 

C 

200 

D 

48 12 
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Example 
Shaft ABC has a diameter of 60 mm and shaft CD has a diameter of  
45 mm.  The first 0.4 m of AB is hollow with a wall thickness of 4 mm.  
Determine the rotation of point D.  G= 38 GPa. 
Units: N•m, m. 

A B C 
400 

1.2 0.8 
0.4 

D 



3-13 Statically Indeterminate Shafts 

STATICALLY INDETERMINATE SHAFTS 

Example 
The steel shaft AB has a diameter of 60 mm and the copper shaft BC 
has a diameter of 45 mm.  Determine the reactions at A and C. 
Units: kN•m, m. 
G (steel)= 77.2 GPa 
G (copper)= 44 GPa. 

A B 
C

1.2 0.8 

3 

A B 
C

3 

A B 
C
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Example 
The copper shaft ABC is hollow between A and B, and solid between B 
and C.  Shaft ABC has an outer diameter of 60 and an inside diameter 
between A and B of 52 mm.  The solid steel shaft CD has a diameter of 
45.  Determine the length x so that the reactions at A and D are equal.  
Units: kN•m, m. 
G (steel)= 77.2 GPa 
G (copper)= 44 GPa. A B C

1.2 0.8 

3 

x 

D 

A B C
3 

D 

A B C
D 
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Example 
The shaft AB has an outer shell of steel and an inner core of copper.   
The outside diameter of the steel shaft is 30 mm and the copper core  
has a diameter of 20 mm.  The two materials are firmly connected 
along their lengths.  Determine the torque in each material. 
Units: kN•m, m. 
G (steel)= 77.2 GPa 
G (copper)= 44 GPa. A B 

1.2 

3 

Cross 
Section 
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Example
The steel shaft ABC has a diameter of 60 and the copper shaft CD has 
a diameter of 45 mm.  Determine the reactions at A and D.
Units: kN•m, m.
G (steel)= 77.2 GPa
G (copper)= 44 GPa. A B C

1.2 0.8 

3 

0.5 

D 

A B C
D 

A B C
D 

3 



3-17 Design of Transmission Shafts 

DESIGN OF TRANSMISSION SHAFTS 

T 

P Tω = 

2P fTπ = 

2
33,000

nTH Horsepower π 
= = 

2
PT

fπ 
= 60 30

2
P PT
n nπ π 

= = 
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Example
A pipe is designed to transmit 90 kW at 15 Hz.  The inside diameter of 
the shaft is to be three-fourths of the outer diameter.  a) Calculate the 
minimum required diameter d if the maximum shear stress is 50 MPa.  
b) Find the diameter if the allowable normal stress is 65 MPa.
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Example 
The motor generates 150 hp at 100 rpm and gears B and C consume 
100 and 50 hp respectively.  Determine the diameter of the solid 
uniform shaft if the maximum shear stress is limited to 14,000 psi and 
the maximum rotation at C is 1.75°.  G= 11.2E6 psi.  Units: lbs, in. 

A B C 

48 38 



3-20 Stress Concentrations in Circular Shafts 

STRESS CONCENTRATIONS IN CIRCULAR SHAFTS 

1.0 

1.1 

1.2 

1.3 

1.4 

1.5 

1.6 

1.7 

1.8 

0 0.05 0.10 0.15 0.20 0.25 0.30 

k 

r/d 

D/d=1.111 

D/d=1.25 

D/d=1.666 

D/d=2 

D/d=2.5 

r 

d 

D 

Stress-concentration factors for 
fillets in circular shafts 

Ref.: W.D. Pilkey, Peterson’s Stress Concentration 
Factors, 2nd ed., John Wiley and Sons, New York, 1997 
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Example 
Determine the maximum torque that can be applied if the allowable 
shear stress is 9500 psi.  The diameters of the shafts are 2.06 and 
1.25 in.  Units: lbs, in. 

T T 

R0.25 

1.0 

1.1 

1.2 

1.3 

1.4 

1.5 

1.6 

1.7 

1.8 

0 0.05 0.10 0.15 0.20 0.25 0.30 

k 

r/d 

D/d=1.111 

D/d=1.25 

D/d=1.666 

D/d=2 

D/d=2.5 

r 

d 

D 

Stress-concentration factors for 
fillets in circular shafts 

Ref.: W.D. Pilkey, Peterson’s Stress Concentration 
Factors, 2nd ed., John Wiley and Sons, New York, 1997 
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Example 
Determine the smallest fillet size if the allowable shear stress is 135 
MPa.  The diameters of the shafts are 50 and 30 mm.  Units: N•m. 

511 511 

r 

1.0 

1.1 

1.2 

1.3 

1.4 

1.5 

1.6 

1.7 

1.8 

0 0.05 0.10 0.15 0.20 0.25 0.30 

k 

r/d 

D/d=1.111 

D/d=1.25 

D/d=1.666 

D/d=2 

D/d=2.5 

r 

d 

D 

Stress-concentration factors for 
fillets in circular shafts 

Ref.: W.D. Pilkey, Peterson’s Stress Concentration 
Factors, 2nd ed., John Wiley and Sons, New York, 1997 
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Example 
The motor generates 2,000 ft-lb of torque to the shaft at A.  The gears 
at B, and C consume 500, and 1,500 ft-lb respectively.  Determine the 
maximum shear stress at the .25" fillet between B and C. 
Units: in. 

1.0 

1.1 

1.2 

1.3 

1.4 

1.5 

1.6 

1.7 

1.8 

0 0.05 0.10 0.15 0.20 0.25 0.30 

k 

r/d 

D/d=1.111 

D/d=1.25 

D/d=1.666 

D/d=2 

D/d=2.5 

r 

d 

D 

Stress-concentration factors for 
fillets in circular shafts 

Ref.: W.D. Pilkey, Peterson’s Stress Concentration 
Factors, 2nd ed., John Wiley and Sons, New York, 1997 

A 
B 

C 2 
3.5 



3-24 Thin-Walled Hollow Shafts 

THIN-WALLED HOLLOW SHAFTS 

2 m

T
tA

τ = 

24 m

m

AJ L
t

= 
∑ 

24
TL ds TL
A G t GJ

φ = = ∫ v 

Where 
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Example 
A 
Example 
A 45 kip-in torque is applied to the hollow shaft.  Neglecting stress 
concentrations, determine the shear stress at points a and b. 
Units: in. 

0.25 TYP 

0.15 TYP 

3 

4.5 

a 

b 
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Example 
A 
Example 
A 70 kN•m torque is applied to the hollow 10 mm uniform shaft.  
Neglecting stress concentrations, determine the shear stress at points 
a and b.  Units: mm. 

R75 TYP 

180 

a 

b 
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Example 
A 
Example 
A 17 kN•m torque is applied to the hollow 8 mm uniform shaft.  
Neglecting stress concentrations, determine the shear stress at points 
a and b.  Units: mm. 

a 

b 
200 

200 
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Example 
A 
Example 
A 17 kN•m torque is applied to the hollow 8 mm uniform shaft.  
Determine the rotation of the 1200 mm shaft. 
G= 77.2 GPa.  Units: mm. 

200 

200 

T T 

1200 
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TORSION OF NONCIRCULAR MEMBERS 
(OPEN SHAPES)

x

y

y

2
1

  T
C ab

Where: 
 a= sum of the lengths
 b= thickness of any part

a/b     C
1
       C

2

1.0 0.208       0.1406                                                      
1.2 0.219    0.1661
1.5 0.231    0.1958
2.0 0.246    0.229
2.5 0.258    0.249
3.0 0.267    0.263
4.0 0.282    0.281
5.0 0.291    0.291
10 0.312    0.312
 0.333    0.333

L
1

L
2

L
1

L
2

L
1

L
2

L
1

L
2

a= 2(L1 + L2)
b= t  (if uniform thk)

a= L1 + L2
b= t  (if uniform thk)

a= L1 + L2
b= t  (if uniform thk)

a= L1 + 2L2
b= t  (if uniform thk)

3
2( )

 


TL
C ab G
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1.5kN·m

150mm

12mm (TYP)

350mm

12mm

Example
Determine the maximum shear stress for the shape below.
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SUMMARY 

Stresses in the Elastic Range 

Angle of Twist in the Elastic Range 

Statically Indeterminate Shafts 

14 

6 

A B 
C

1.2 0.8 

3 

max
p

Tr Tc
I J

τ = = TL
GJ

φ = 
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SUMMARY 

Stress Concentrations in Circular Shafts 

Thin-Walled Hollow Shafts 

Design of Transmission Shafts 

T 

2 m

T
tA

τ = 

24 m

m

AJ L
t

= 
∑ 

24
TL ds TL
A G t GJ

φ = = ∫ v 
Where 

1.0 

1.1 

1.2 

1.3 

1.4 

1.5 

1.6 

1.7 

1.8 

0 0.05 0.10 0.15 0.20 0.25 0.30 

k 

r/d 

D/d=1.111 

D/d=1.25 

D/d=1.666 

D/d=2 

D/d=2.5 

r 

d 

D 

Stress-concentration factors for 
fillets in circular shafts 

Ref.: W.D. Pilkey, Peterson’s Stress Concentration 
Factors, 2nd ed., John Wiley and Sons, New York, 1997 

2
PT

fπ 
= 



4-1 Introduction 

Chapter 4 
Pure Bending 

INTRODUCTION 

Bending Stress 

L 
BA

W 

A

W 

Bending of Members made of Several Materials 

Stress Concentrations 

30 

2.5 

5 

24 

12 

Cross-section, in 

Aluminum 

Brass 

Steel

Brass 

Aluminum 

0.5 TYP 

2.5 

Cross-section, in 

1.5 

D d 

r 
M M M M 

D d 

2r 

r 
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Eccentric Axial Loading in a Plane of Symmetry 

Unsymmetric Bending 

P 

My 

Mx 

My 

Mx 

My 

Mx 



4-3 Bending Stress 

BENDING STRESS 

L 



4-4 Bending Stress 

y 

z 

y 

z x x 

BENDING STRESS- continued 

x
My
I

σ = − 



4-5 Section Modulus 

SECTION MODULUS 

x
My M
I S

σ = − = − 

y 

z 
x 

c1 

c2 

1σ 

2σ − 

h 

b 

x 

y 
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Example 
Find the maximum bending stress at section a-a (3 m from A) of the 
W150x29.8 beam.  Units: N, m. 

6 

B 
A 

4000 

1.5 1.5 

4000 

a 

a 

A 

4000 

W150x29.8 
2

4

4

3

3

f

f

w
6

x
6

y

3
x

3
y

Area, A 3790
Depth, d 157
Flange Width, b 153
Flange Thickness, t 9.3
Web Thickness, t 6.6
I 17.2 10
I 5.56 10

219 10
72.7 10

mm

mm

mm

mm

mm

mm

mm

mm

mm

x
x

S x
S x

= 
= 

= 
= 

= 

= 

= 

= 

= 
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Example 
Find the bending stresses at the wall at points A and B for a 6" pipe 
with a wall thickness of 0.125".  Units: lb, ft. 

Cross-section

A 

B 

3 

2000 
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Example 
Find the bending stresses at the wall at points A and B for the W6x20 
beam.  Units: lb, ft. 

Cross-section 

A 

B 

3 

2000 

2

4

4

3

3

f

f

w

x

y

x

y

Area, A 5.87
Depth, d 6.20
Flange Width, b 6.02
Flange Thickness, t 0.365
Web Thickness, t 0.260
I 41.4
I 13.3

13.4
4.41

in

in

in

in

in

in

in

in

in

S
S

= 
= 

= 
= 

= 

= 

= 

= 

= 

W6x20 
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Example 
Find the bending stresses at the wall at points A and B for the C6x13 
beam.  Units: lb, ft. 

Cross-section
3 

200 

A

B

C6x13 
2

4

4

3

3

f

f

w

x

y

x

y

Area, A 3.83
Depth, d 6.00
Flange Width, b 2.16
Flange Thickness, t 0.343
Web Thickness, t 0.437
I 17.4
I 1.05

5.80
0.642

0.514

in

in

in

in

in

in

in

in

in

in

S
S
x

= 
= 

= 
= 

= 

= 

= 

= 

= 
= 
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6 
BA

200 

Example 
Find the maximum bending stress at section a-a (3 m from A) of the 
W150x29.8 beam.  Units: N/m, m. 

A

200 

a 

a 

W150x29.8 
2

4

4

3

3

f

f

w
6

x
6

y

3
x

3
y

Area, A 3790
Depth, d 157
Flange Width, b 153
Flange Thickness, t 9.3
Web Thickness, t 6.6
I 17.2 10
I 5.56 10

219 10
72.7 10

mm

mm

mm

mm

mm

mm

mm

mm

mm

x
x

S x
S x

= 
= 

= 
= 

= 

= 

= 

= 

= 
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Example 
The sign is subjected to a wind force of 250 lb at it’s centroid 7' from 
the center of the column.  The column has an outside diameter of 10" 
and a wall thickness of 0.25".  Considering only this force, determine 
the maximum bending stress.  Units: ft. 

ENGINEERING 
WAY 

NEXT EXIT 

A 

7 

30 

Front View Side View 



4-12 Parallel-Axis Theorem 

PARALLEL-AXIS THEOREM 

MOMENTS OF INERTIA 

x 

y 

EXAMPLE 

PARALLEL-AXIS THEOREM 

t (uniform thk.) 

x x 

a/2 

a/2 

b 

2( )x x yI I Ad′ = + ∑ 
2( )y y xI I Ad′ = + ∑ 
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Example 
The simply-supported beam below has a cross-sectional area as 
shown.  Determine the bending stress that acts at points c and d, 
located at section a-a (3 m from A).  Units: N/m, mm (uno). 

6 m 
BA

5000 

A

5000 

150 

150 

20 

20 

15 

c 

d 
250 

a 

a 
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Example 
The member is designed to resist a moment of 5 kip•in about the 
horizontal axis.  Determine the maximum normal stress in the member 
for the two similar cross-sections.  Units: in. 

1.5 

3 

0.5 
0.25 
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Example 
Compare the bending stresses between the two cases for a moment 
about the horizontal axis.  Case 1 is a simple solid cross-section, 
whereas case 2 is made up of 3 identical boards.  The 3 boards aren’t 
connected together and simply rest on one another.  Units: in. 

1.5 

3 

Case 1 

3 

1.5 

Case 2 
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Example 
The two beams are connected by a thin rigid plate on the top and 
bottom side of the flanges.  Find the bending stresses at the wall at 
points A, B and C for the W6x20 beam.  Units: lb, ft 

3 

2000 

B 

A, C 

2

4

4

3

3

f

f

w

x

y

x

y

Area, A 5.87
Depth, d 6.20
Flange Width, b 6.02
Flange Thickness, t 0.365
Web Thickness, t 0.260
I 41.4
I 13.3

13.4
4.41

in

in

in

in

in

in

in

in

in

S
S

= 
= 

= 
= 

= 

= 

= 

= 

= 

W6x20 
Cross-section 

A 

B 

C 
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Example 
The two beams are connected by a thin rigid plate on the top and 
bottom side of the flanges.  Find the bending stresses at the wall at 
points A, B and C for the W6x20 beam.  Units: lb, ft 

3 

2000 

B 

A, C 

Cross-section 

A 

B 

C 

2000 

2

4

4

3

3

f

f

w

x

y

x

y

Area, A 5.87
Depth, d 6.20
Flange Width, b 6.02
Flange Thickness, t 0.365
Web Thickness, t 0.260
I 41.4
I 13.3

13.4
4.41

in

in

in

in

in

in

in

in

in

S
S

= 
= 

= 
= 

= 

= 

= 

= 

= 

W6x20 
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Example 
The two beams are connected by bolts through the flanges.  Find the 
bending stresses at the wall at points A and B for the W6x20 beam.  
Units: lb, ft 

A 

B 

3 B 

A 2000 

2

4

4

3

3

f

f

w

x

y

x

y

Area, A 5.87
Depth, d 6.20
Flange Width, b 6.02
Flange Thickness, t 0.365
Web Thickness, t 0.260
I 41.4
I 13.3

13.4
4.41

in

in

in

in

in

in

in

in

in

S
S

= 
= 

= 
= 

= 

= 

= 

= 

= 

W6x20 
Cross-section 
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Example 
The two beams are connected by bolts through the flanges.  Find the 
bending stresses at the wall at points A and B for the W6x20 beam.  
Units: lb, ft 

3 B 

A 

2000 

A 

B 

2000 

2

4

4

3

3

f

f

w

x

y

x

y

Area, A 5.87
Depth, d 6.20
Flange Width, b 6.02
Flange Thickness, t 0.365
Web Thickness, t 0.260
I 41.4
I 13.3

13.4
4.41

in

in

in

in

in

in

in

in

in

S
S

= 
= 

= 
= 

= 

= 

= 

= 

= 

W6x20 
Cross-section 
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Cross-section 

c 

d 

150 

100 

24 

30 

Example 
The simply-supported beam below has a cross-sectional area as 
shown.  Determine the bending stress that acts at points c and d, 
located at section a-a (3 m from A).  Units: N/m, mm (UNO). 

6 m 
BA

5000 

A

5000 

a 

a 
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BENDING OF MEMBERS MADE OF SEVERAL MATERIALS 

N.A. 

y y 

xσ 
xε 

x
Myn
I

σ = − 
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Example 
Find the stress in each of the three metals if a moment of 12 k-in is 
applied about the horizontal axis.   
E (aluminum)= 10E6, E(steel)= 30E6, E (brass)= 15E6 psi.  Units: in. 

Aluminum 

Brass 

Steel 

Brass 

Aluminum 

0.5 TYP 

2.5 

1.5 
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Example 
A W150x29.8 wide flange beam is reinforced with wood planks that are 
securely connected to the flanges.  Esteel/Ewood= 20.  If the allowable 
stresses in the wood and steel are 4.5 MPa and 52 MPa, respectively, 
determine the allowable distributed load w based on section a-a (3 m 
from A).  Units: N/m, mm (UNO). 

6 m 
BA

w 

A

w 

Cross-section 

153 

40 

a 

a 

W150x29.8 
2

4

4

3

3

f

f

w
6

x
6

y

3
x

3
y

Area, A 3790
Depth, d 157
Flange Width, b 153
Flange Thickness, t 9.3
Web Thickness, t 6.6
I 17.2 10
I 5.56 10

219 10
72.7 10

mm

mm

mm

mm

mm

mm

mm

mm

mm

x
x

S x
S x

= 
= 

= 
= 

= 

= 

= 

= 

= 
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Example 
Two steel plates are securely fastened to a 6"x10" wood beam.  
Esteel/Ewood= 20.  Knowing that the beam is bent about the horizontal 
axis by a 125 kip-in moment, determine the maximum stress in (a) the 
wood, (b) the steel.  Units: in. 

Cross-section 

2 TYP 

0.375 TYP 
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Example
Determine the stress in the concrete and steel if a moment of 1500 
kip-in is applied about the horizontal axis.  Area of steel= 3.14 sq. in.
E (steel)= 30E6 psi, E (concrete)= 3.75E6 psi.  Units: in.

30 

2.5 

5 

24 

12 

Cross-section 

30 

Cross-section 
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8 

22 

Cross-section 

Example 
Determine the required steel area for the beam to be balanced.  
Allowable stress in the steel and concrete are 33,000 and 3,000 psi 
respectively.   
E (steel)= 29E6 psi, E (concrete)= 3.5E6 psi.  Units: in. 

Cross-section 
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STRESS CONCENTRATIONS 

Ref.: W.D. Pilkey, Peterson’s Stress Concentration Factors, 2nd ed., John Wiley and Sons, New York, 1997 

D d 

r 
M M M M 

D d 

2r 

r 

D/d= 3 

Stress-concentration factors for flat 
bars with fillets under pure bending 

1.0 

2.0 

1.2 

2.2 

1.4 

2.4 

1.6 

2.6 

1.8 

0 0.05 0.10 0.15 0.20 0.25 0.30 

k 

r/d 

2.8 
3.0 

2 

1.5 
1.2 

1.1 

1.02 
1.01 

D d 

r 
M M 

1.0 

2.0 

1.2 

2.2 

1.4 

2.4 

1.6 

2.6 

1.8 

0 0.05 0.10 0.15 0.20 0.25 0.30 

k 

r/d 

2.8 
3.0 

Stress-concentration factors for flat 
bars with groves under pure bending 

2 

1.5 
1.2 

1.1 

1.05 

M M 

D d 

2r 

r 

max
Myk
I

σ ⎛ ⎞ = ⎜ ⎟ 
⎝ ⎠ 
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D/d= 3 

Stress-concentration factors for flat 
bars with fillets under pure bending 

1.0 

2.0 

1.2 

2.2 

1.4 

2.4 

1.6 

2.6 

1.8 

0 0.05 0.10 0.15 0.20 0.25 0.30 

k 

r/d 

2.8 
3.0 

2 

1.5 
1.2 

1.1 

1.02 
1.01 

D d 

r 
M M 

150 100 

R6 

M M 

Ref.: W.D. Pilkey, Peterson’s Stress Concentration 
Factors, 2nd ed., John Wiley and Sons, New York, 1997 

Example 
For the 13 mm thick plate, determine the largest bending moment that 
can be applied if the allowable bending stress is 90 MPa.  Units: mm. 
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Ref.: W.D. Pilkey, Peterson’s Stress Concentration 
Factors, 2nd ed., John Wiley and Sons, New York, 1997 

1.0 

2.0 

1.2 

2.2 

1.4 

2.4 

1.6 

2.6 

1.8 

0 0.05 0.10 0.15 0.20 0.25 0.30 

k 

r/d 

2.8 
3.0 

Stress-concentration factors for flat 
bars with groves under pure bending 

2 

1.5 
1.2 

1.1 

1.05 

M M 

D d 

2r 

r 

Example 
For the 7/8" thick plate, determine the largest bending moment that can 
be applied if the allowable bending stress is 24,000 psi.  Units: in. 

M M 

6 4 

.75 

R0.375 



4-30 Eccentric Axial Loading in a Plane of Symmetry 

ECCENTRIC AXIAL LOADING IN A PLANE OF SYMMETRY 

P P 

M 

In general, 

x
P My
A I

σ = + 



4-31  

Example 
For the solid rectangular bar, determine the largest load P that can be 
applied based on a maximum normal stress of 130 MPa.  Ignore any 
stress concentrations.  Units: mm. 

P P 

a 

a 

b 

b 

Section a-a Section b-b 

125 125 

100 
50 

P 

P 
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2

4

4

3

3

f

f

w

x

y

x

y

Area, A 5.87
Depth, d 6.20
Flange Width, b 6.02
Flange Thickness, t 0.365
Web Thickness, t 0.260
I 41.4
I 13.3

13.4
4.41

in

in

in

in

in

in

in

in

in

S
S

= 
= 

= 
= 

= 

= 

= 

= 

= 

W6x20 

Example 
The three loads are applied at the end of the W6x20 beam.  Find the 
normal stress at the wall at point A for the beam, (a) if all three loads 
are applied, (b) the bottom load is removed.  Units: lb, ft. 

Cross-section 

A 

3 

20000 
20000 

20000 

A 
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Example 
The 100 mm diameter solid circular bar has an eccentric load P 
applied.  Determine the maximum location x that the load can be 
placed without inducing any tensile stresses.  Units: mm. 

P 

x 
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Example 
Compute the maximum tension and compression stresses located at 
section a-a.   Units: N, mm (UNO). 

100 

60 

8 (uniform) 

Section a-a 

6 m 

B 
A

400 a 

a 

2 m 

125 

4 m 

A

400 a 

a 

125 
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UNSYMMETRIC BENDING 

My 

Mz 

My 

Mz 

My 
Mz 

yz
x

z y

M zM y
I I

σ = − + 

My 

Mz 

yz
x

z y

M zM yP
A I I

σ = − + 
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Example 
For the W6x20 section, determine the normal stresses at A and B.  
Units: kip•in. 

60 

45 

A B 

2

4

4

3

3

f

f

w

x

y

x

y

Area, A 5.87
Depth, d 6.20
Flange Width, b 6.02
Flange Thickness, t 0.365
Web Thickness, t 0.260
I 41.4
I 13.3

13.4
4.41

in

in

in

in

in

in

in

in

in

S
S

= 
= 

= 
= 

= 

= 

= 

= 

= 

W6x20 
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Example 
For the WT18x150 section, determine the normal stresses at A, B and 
C.  Units: k•in. 

700 

1500 

A B 

C 

2

4

4

3

3

f

f

w

x

y

x

y

Area, A 44.10
Depth, d 18.4
Flange Width, b 16.7
Flange Thickness, t 1.68
Web Thickness, t 0.945
I 1230
I 648

86.1
77.8

4.13

in

in

in

in

in

in

in

in

in

in

S
S
y

= 
= 

= 
= 

= 

= 

= 

= 

= 
= 

WT18x150 
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Example 
For the channel section, determine the normal stresses at A and B. 
Units: kN•m, mm. 

10 
15° 

A 

B 
100 

12 

220 

20 TYP 
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Example 
For the L76x76x12.7 angle section, determine the normal stresses at A 
and B.  Units: N•m. 

400 
A 

B 

2

46
x y

z

Area, A 1770
d 76

23.6
Thickness, t 12.7
I I 0.915 10

14.8

mm

mm

mm

mm

mm

mm

b
x y

x
r

= 
= = 
= = 

= 
= = 
= 
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SUMMARY 

Bending Stress 

L 
BA

W 

Bending of Members made of Several Materials 

Stress Concentrations 

30 

2.5 

5 

24 

12 

Cross-section, in 

Aluminum 

Brass 

Steel

Brass 

Aluminum 

0.5 TYP 

2.5 

Cross-section, in 

1.5 

D d 

r 
M M M M 

D d 

2r 

r 

x
My M
I S

σ = − = − 

x
Myn
I

σ = − 

D/d= 3 

Stress-concentration factors for flat 
bars with fillets under pure bending 

1.0 

2.0 

1.2 

2.2 

1.4 

2.4 

1.6 

2.6 

1.8 

0 0.05 0.10 0.15 0.20 0.25 0.30 

k 

r/d 

2.8 
3.0 

2 

1.5 
1.2 

1.1 

1.02 
1.01 

D d 

r 
M M 
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SUMMARY 

Eccentric Axial Loading in a Plane of Symmetry 

Unsymmetric Bending 

P 

My 

Mz 

My 

Mz 

My 

Mz 

x
P My
A I

σ = − 

yz
x

z y

M zM yP
A I I

σ = − + 



5-1 Internal Forces in Members 

Chapter 5 
Analysis and Design of Beams for Bending 

INTRODUCTION 

Internal Forces in Members 

Shear and Bending-Moment Diagrams 

Design of Prismatic Beams for Bending 

A

B

A

B

C

P 

A E

F

DB

C

5'
10'

4'

8'

80' 40' 40' 

B A

P P 

C D 

80' 40' 40' 

B A

P P 

C D 

Cross-section 

A 
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A

B

7 14 7 

7 

10 

A 

B 

D 

C 

E 

F 

A

B

C

P 

A E

F

DB

C

5'
10'

4'

8'

C 

E 

INTERNAL FORCES IN MEMBERS
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A

B

Example 
Determine the internal forces 
at point J.  P= 5000 lb.  
Units: Lb, ft. 

P 

A E

F

DB

C

5 
10 

4 

8 

J 

1.5 



5-4 Shear and Bending Moment Diagrams 

Shear and Bending Moment Diagrams 

M 

V 

Sign Convention 
M V 



5-5 Shear and Bending Moment Diagrams 

Why do we Need to Draw Shear and Bending Diagrams? 

80' 40' 40' 

B A

P P 

C D 
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Support Reactions

Segment 
A to C 

C to D 

D to B 

Shear Moment 

Example 
Draw the shear and bending-moment diagrams for the beam and loading 
shown.  Label all points of change, maximums and minimums, and the 
axes.  Units: Lb, ft. 

8 4 4 

B A

P P 

C D 

x 

A

P 

x 

A

P 

x 

A

P 
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Support Reactions 

Segment Shear Moment 

Example 
Draw the shear and bending-moment diagrams for the beam and 
loading shown.  Label all points of change, maximums and 
minimums, and the axes. 

L 
BA

W 

x 

A

W 
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Caution: 

L 
BA

W 

L 
BA

When drawing FBDs, always use the original loading and not the 
equivalent. 



5-9 Relations Among Load, Shear, and Bending Moment 

RELATIONS AMONG LOAD, SHEAR, AND BENDING-MOMENT 

L 
BA

w w 

dV w
dx

= − 

dM V
dx

= 

The change in shear is 
equal to the area under the 
load curve. 

The change in moment is 
equal to the area under the 
shear curve. 

The slope of the shear 
diagram is equal to the 
value of the w load. 

The slope of the moment 
diagram is equal to the 
value of the shear. 

M V xΔ = Δ 

V w xΔ = − Δ 



5-10 Relationship Between Load, Shear, and Bending Moment 

A B

Observations about the Shape of Shear/ Moment Diagrams 
Shear Diagrams: 
     -Are a plot of forces (note the units). 
     -Discontinuities occur at concentrated forces. 
 
Moment Diagrams: 
     -Are a plot of moments (note the units). 
     -Discontinuities occur at concentrated moments. 
 
Miscellaneous: 
     -Check your work by noting that you always start and end at zero. 
      -Always use the original FBD and not the equivalent. 

15 kN 25 kN 20 kN 

30 kN 

4 kips/ft 

M 
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Support Reactions

Example 
Draw the shear and bending-moment diagrams for the beam and 
loading shown.  Label all points of change, maximums and 
minimums, and the axes.  Units: kN, m  

3 
BA

8 8 

C D 

10 

10 

3 3 3 
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Support Reactions

Example 
Draw the shear and bending-moment diagrams for the beam and 
loading shown.  Label all points of change, maximums and 
minimums, and the axes.  Units: kN, m  

3.2 
BA

2 kN/m 

4 

0.8 
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Example 
Draw the shear and bending-moment diagrams for the beam 
and loading shown.  Label all points of change, maximums and 
minimums, and the axes.  Units: Lb, ft. 

8 4 4 
B A

30 lb/ft 
20 lb/ft 
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Example 
Sketch the shear and bending-moment diagrams for the beam 
and loading shown.  Label all points of change, maximums and 
minimums, and the axes.  Units: Lb, ft. 

8 4 
B A

30 lb/ft 

4 
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Example 
Sketch the shear and bending-moment diagrams for the beam 
and loading shown.  Label all points of change, maximums and 
minimums, and the axes.  Units: Lb, ft. 

5 4 3 4 
B A

30 lb/ft 
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Example 
Sketch the shear and bending-moment diagrams for the beam 
and loading shown.  Label all points of change, maximums and 
minimums, and the axes.  Units: Lb, ft. 

5 4 3 4 
B A

30 lb/ft 

20 lb/ft 
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Example 
Here is an example of how the shape of the girder reflects the 
shear and bending diagrams.  

A
B 

L 
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So why did they put that gap in the bridge? 

B
A

B
A
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Pins 
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Example 
Draw the shear and bending-moment diagrams for the beam and 
loading shown.  Label all points of change, maximums and 
minimums, and the axes.  The addition of the internal pin at the 
center of the beam allows additional head room because rather 
than the moment being a maximum in the center it becomes zero.  
This design is used at Wings Air West in SLO.  Total span= 75 ft. 

500 lb/ft 

A B

500 lb/ft 

A B
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Example 
Draw the shear and bending-moment diagrams for the beam and 
loading shown.  Label all points of change, maximums and minimums, 
and the axes. This example demonstrates that with the addition of an 
internal pin we get an additional equation, otherwise we would have too 
many unknowns. 

Support Reactions 
C 

A B 

3 

3.5 1 2 

C 

B 

3 
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DESIGN OF PRISMATIC BEAMS FOR BENDING

Example 
Design the cross section’s minimum height of the beam, knowing that 
the grade of wood used has an allowable bending stress of 12 MPa.  
Units: N, m. 

6 

B 
A 

3000 

1.5 1.5 

3000 

h 

100 

V 
(N) 

M 
(N•m) 
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Cross-section

Example 
Knowing that the grade of copper used has an allowable bending 
stress of 15 ksi, determine the minimum wall thickness for the 6" 
diameter pipe.  Units: lb, ft. 

3 

700 500 lb/ft 

V 
(lb) 

M 
(k•in) 
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Example 
Knowing that the allowable bending stress for steel is 160 MPa, 
determine the most economical W410-shape to support the load. 
Units: kN, m. 

20 kN/m 

6 

B 
A 

100 

1.5 1.5 

100 

Cross-section 

X X 

V 
(kN) 

M 
(kN•m) 
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Cross-section

A B 

6.5 

500 
50 lb/ft 

4 

Example 
Knowing that the allowable bending stress for steel is 24 ksi, determine 
the most economical C7-shape to support the load. 
Units: lb, ft. 

Y Y 

V 
(lb) 

M 
(lb•ft) 
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6 

BA

30 kN/m 

Example 
Knowing that the allowable bending stress for steel is 160 MPa, 
determine the most economical W310-shape to support the load. 
Units: kN, m. 

80 

3 Cross-section 

X X 

V 
(kN) 

M 
(kN•m) 
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Example 
Two rolled-steel C150 channels are welded back to back.  Knowing 
that the allowable bending stress for steel is 160 MPa, determine the 
most economical channels to support the load. 
Units: kN, m. 

6 

BA

8 

1.5 

5 4 

1.5 1.5 

Cross-section 

X X 

V 
(kN) 

M 
(kN•m) 
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SUMMARY 

Internal Forces in Members 

Shear and Bending-Moment Diagrams 

Design of Prismatic Beams for Bending 

A

B

A

B

C

P 

A E

F

DB

C

5'
10'

4'

8'

80' 40' 40' 

B A

P P 

C D 

80' 40' 40' 

B A

P P 

C D 

Cross-section 

A 

Sign Convention 

V 

M 

M V xΔ = Δ V w xΔ = − Δ 



6-1 Introduction 

Chapter 6 
Shearing Stresses in Beams and 

Thin-Walled Members 
INTRODUCTION 

Shearing Stresses in Beams 

Shearing Stresses in Thin-Walled Members 

Shearing Forces and Stresses in Built-Up Members 

6 m 

B 
A 

200 

1.5 m 1.5 m 

200 

200 

100 
a 

a 

Cross-section 

150

150

20

20

20

Welds

250

100 

60 

8 
A 

B 12 

152 

25 

152 

25 

A 

8 



6-2 Shearing Stresses in a Beam 

SHEARING STRESSES IN A BEAM 

P 

b 

h 

y 

z 

z 

y 

b 

h 

Cross-section 

dx 

B A 

b 
dx 

VQ VQ
Ib It

τ = = 
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Example 
Determine the maximum shearing stress. 
Units: N, mm (UNO). 

6 m 

B 
A 

3000 

1.5 m 1.5 m 

3000 

150 

100 

Cross-section 

V 
(N) 

150 

100 
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Cross-section 
3 

700 500 lb/ft 

Example 
Determine the maximum shear stress for the 6" diameter pipe.  The 
pipe has a wall thickness of 0.28". 
Units: lb, ft. 

V 
(lb) 
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Example 
For the W410x85 section, determine the maximum shear stress. 
Units: kN, m. 

Cross-section 

V 
(kN) 

2

4

4

f

f

w
6

x
6

y

Area, A 10800
Depth, d 417
Flange Width, b 181
Flange Thickness, t 18.2
Web Thickness, t 10.9
I 315 10
I 18.0 10

mm

mm

mm

mm

mm

mm

mm

x
x

= 
= 

= 
= 

= 

= 

= 

W410x85 

20 kN/m 

6 

B 
A 

100 

1.5 1.5 

100 
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Cross-section A 
B 

6.5 

500 
50 lb/ft 

4 

Example 
For the C7x9.8 channel section, determine the maximum shear stress. 
Units: lb, ft. 

V 
(lb) 

Given 

2

4

4

f

f

w

x

y

Area, A 2.87
Depth, d 7.00
Flange Width, b 2.09
Flange Thickness, t 0.366
Web Thickness, t 0.210
I 21.3
I 0.968

0.540

in

in

in

in

in

in

in

inx

= 
= 

= 
= 

= 

= 

= 
= 

C7x9.8 
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6 

BA

30 kN/m 

Example 
For the W310x107 section, determine the maximum shear stress. 
Units: kN, m. 

80 

3 
Cross-section 

V 
(kN) 

2

4

4

f

f

w
6

x
6

y

Area, A 13600
Depth, d 311
Flange Width, b 306
Flange Thickness, t 17.0
Web Thickness, t 10.9
I 248 10
I 81.2 10

mm

mm

mm

mm

mm

mm

mm

x
x

= 
= 

= 
= 

= 

= 

= 

W310x107 
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Example 
Two rolled-steel C150x12.2 channels are welded back to back.  
Determine the maximum shear stress. 
Units: kN, m. 

Cross-section 

6 

BA

8 

1.5 

5 4 

1.5 1.5 

V 
(kN) 

2

4

4

f

f

w
6

x
6

y

Area, A 1540
Depth, d 152
Flange Width, b 48
Flange Thickness, t 8.7
Web Thickness, t 5.1
I 5.35 10
I 0.276 10

12.7

mm

mm

mm

mm

mm

mm

mm

mm

x
x

x

= 
= 

= 
= 

= 

= 

= 
= 

C150x12.2 
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SHEARING STRESSES IN A BUILT-UP BEAM 

P 

b 

h 

y 

z 

z 

y 

b 

h 

Cross-section 

dx 

B A 

b 
dx 

VQ VQ
Ib It

τ = = 
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Example 
The two 0.25"x0.5" strips are glued to the 3"x1.5" main member.   
Determine the maximum shear stress in the glue between them. 
Units: lb, in. 

1.5 

3 

0.5 
0.25 

3000 

4

0.802"
1.09in

y
I

= ↓ 
= 

From a previous solution: 
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Example 
The three 0.50" thick boards are glued together using a glue with a 
shear capacity of 350 psi.  Based on the glue capacity, compute the 
minimum width of the boards to resist a vertical shear force of 1500 lb. 
Units: lb, in. 

w 

1.5 

1500 
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Example 
The two beams are connected every 6" by bolts through the flanges.  
Determine the force in each bolt for the W6x20 built-up beam. 
Units: lb, ft 

3 

2000 

4

196inI = 

From a previous solution: 

2

4

4

3

3

f

f

w

x

y

x

y

Area, A 5.87
Depth, d 6.20
Flange Width, b 6.02
Flange Thickness, t 0.365
Web Thickness, t 0.260
I 41.4
I 13.3

13.4
4.41

in

in

in

in

in

in

in

in

in

S
S

= 
= 

= 
= 

= 

= 

= 

= 

= 

W6x20 
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Example 
The two boards are glued at A and is subjected to a vertical shear 
force of 8 kN.  Determine the shear stress in the glue. 
Units: kN, mm. 

152 

25 

152 

25 

A 

8 
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SHEARING STRESSES IN THIN-WALLED MEMBERS 

dx 
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Example 
Knowing that the vertical shear in the W150x29.8 beam is 150 kN, 
determine the shearing stress at (a) point A, (b) point B. 
Units: kN, mm. 

Cross-section 

25 

A 

B 

150 

W150x29.8 
2

4

4

3

3

f

f

w
6

x
6

y

3
x

3
y

Area, A 3790
Depth, d 157
Flange Width, b 153
Flange Thickness, t 9.3
Web Thickness, t 6.6
I 17.2 10
I 5.56 10

219 10
72.7 10

mm

mm

mm

mm

mm

mm

mm

mm

mm

x
x

S x
S x

= 
= 

= 
= 

= 

= 

= 

= 

= 
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Example 
Knowing that the vertical shear in the rectangular tube is 90 kN, 
determine the shearing stress at (a) point A, (b) point B. 
Units: kN, mm. 

100 

60 

8 

Cross-section 

A 

B 
12 
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Example 
The three boards are glued together and the built-up member is 
subjected to a vertical shear force of 50000 lb.  Determine the shear 
stress in the glue.  Repeat the problem if the two horizontal boards are 
replaced with a single 30"x5" board.  Units: lb, in. 

30 
5 

24 

12 

Cross-section 

50000 4

9.74"
20,200in

y
I

= ↓ 
= 

Given: 
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Example 
The built-up box beam is constructed by nailing four 2"x6" (nominal 
size) boards together.  If each nail can support a shear force of 70 lb, 
determine the maximum spacing s of nails at A and B.   Units: lb, in. 

A 5.5 

1.5 

B 

Cross-section 

3 ft 

150 
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Example
Compute the shear force in each nail to insure that the beams are 
securely bonded to each other. Assume a shear force of 5000 lbs and 
that each nail is spaced every 6".   Units: lb, in.

16 4 

24 

12 

Cross-section 

Given: 

4

11.5"
15,300in

y
I

= ↓ 
= 
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150 

150 

20 

20 

20 

Welds

250 

Example 
If each of the four welds can support 80 kN/m, determine the required 
length of weld.  Assume a shear force of 20 kN.  Units: kN, mm. 

46301 10 inI x − = 
From a previous solution: 
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SUMMARY 

Shearing Stresses in Beams 

Shearing Stresses in Thin-Walled Members 

Shearing Forces and Stresses in Built-Up Members 

6 m 

B 
A 

200 

1.5 m 1.5 m 

200 

200 

100 
a 

a 

Cross-section 

152 

25 

152 

25 

A 

8 

100 

60 

8 
A 

B 12 

150 

150 

20 

20 

20 

Welds

250 



7-1 Introduction 

Chapter 7 
Transformations of Stress and Strain 

INTRODUCTION 
Transformation of Plane Stress 

Mohr’s Circle for Plane Stress 

Application of Mohr’s Circle to 3D Analysis 

xσ xσ 

xyτ 

xyτ 

yσ 

yσ 
xσ ′ 

xσ ′ 

x yτ ′ ′ 

x yτ ′ ′ yσ ′ 

yσ ′ 

20 20 

50 

90 

60 

60 

90 

xσ xσ 

xyτ 

xyτ 

yσ 

yσ 

σ 

τ 

σ 

τ 



7-2 Introduction 

Stresses in Thin-Walled Pressure Vessels 

Measurements of Strain; Strain Rosette 

Transformation of Plane Strain 

Cylindrical Pressure Vessel 

Spherical Pressure Vessel 

x 

y 

x' 
y' 

x 

y 

x' 
y' 
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TRANSFORMATION OF PLANE STRESS 

xσ xσ 

xyτ 

xyτ 

yσ 

yσ 

cos 2 sin 2
2 2

x y x y
x xy

σ σ σ σ 
σ θ τ θ ′ 

+ − ⎛ ⎞ 
= + + ⎜ ⎟ 

⎝ ⎠ 

cos 2 sin 2
2 2

x y x y
y xy

σ σ σ σ 
σ θ τ θ ′ 

+ − ⎛ ⎞ 
= − − ⎜ ⎟ 

⎝ ⎠ 

sin 2 cos 2
2

x y
x y xy

σ σ 
τ θ τ θ ′ ′ 

− ⎛ ⎞ 
= − + ⎜ ⎟ 

⎝ ⎠ 

xσ ′ 

xσ ′ 

x yτ ′ ′ 

x yτ ′ ′ yσ ′ 

yσ ′ 

θ 
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Example 
The state of stress at a point on the surface of a pressure vessel is 
represented on the element shown.  Represent the state of stress at 
the point on another element that is orientated 30° clockwise from the 
position shown.  Units: MPa. 

80 80 

50 

50 

25 

25 

cos 2 sin 2
2 2

x y x y
y xy

σ σ σ σ 
σ θ τ θ ′ 

+ − ⎛ ⎞ 
= − − ⎜ ⎟ 

⎝ ⎠ 

cos 2 sin 2
2 2

x y x y
x xy

σ σ σ σ 
σ θ τ θ ′ 

+ − ⎛ ⎞ 
= + + ⎜ ⎟ 

⎝ ⎠ 

sin 2 cos 2
2

x y
x y xy

σ σ 
τ θ τ θ ′ ′ 

− ⎛ ⎞ 
= − + ⎜ ⎟ 

⎝ ⎠ 
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Example 
Determine the stresses on a surface that is rotated (a) 30° clockwise, 
(b) 15° counterclockwise.  Units: MPa 

80 

80 

50 

50 

cos 2 sin 2
2 2

x y x y
y xy

σ σ σ σ 
σ θ τ θ ′ 

+ − ⎛ ⎞ 
= − − ⎜ ⎟ 

⎝ ⎠ 

cos 2 sin 2
2 2

x y x y
x xy

σ σ σ σ 
σ θ τ θ ′ 

+ − ⎛ ⎞ 
= + + ⎜ ⎟ 

⎝ ⎠ 

sin 2 cos 2
2

x y
x y xy

σ σ 
τ θ τ θ ′ ′ 

− ⎛ ⎞ 
= − + ⎜ ⎟ 

⎝ ⎠ 

cos 2 sin 2
2 2

x y x y
y xy

σ σ σ σ 
σ θ τ θ ′ 

+ − ⎛ ⎞ 
= − − ⎜ ⎟ 

⎝ ⎠ 

cos 2 sin 2
2 2

x y x y
x xy

σ σ σ σ 
σ θ τ θ ′ 

+ − ⎛ ⎞ 
= + + ⎜ ⎟ 

⎝ ⎠ 

sin 2 cos 2
2

x y
x y xy

σ σ 
τ θ τ θ ′ ′ 

− ⎛ ⎞ 
= − + ⎜ ⎟ 

⎝ ⎠ 
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Example 
For the piece of wood, determine the in-plane shear stress parallel to 
the grain, (b) the normal stress perpendicular to the grain. The grain is 
rotated 30° from the horizontal.  Units: psi 

400 

400 

sin 2 cos 2
2

x y
x y xy

σ σ 
τ θ τ θ ′ ′ 

− ⎛ ⎞ 
= − + ⎜ ⎟ 

⎝ ⎠ 

cos 2 sin 2
2 2

x y x y
y xy

σ σ σ σ 
σ θ τ θ ′ 

+ − ⎛ ⎞ 
= − − ⎜ ⎟ 

⎝ ⎠ 
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PRINCIPAL STRESSES: MAXIMUM SHEARING STRESS 

maxσ minσ 

maxσ minσ 
aveσ 

aveσ 

aveσ 

aveσ maxτ 

maxτ 

xσ xσ 

xyτ 

xyτ 
yσ 

yσ 

2
tan 2 xy

p
x y

τ 
θ 

σ σ 
= 

− 

2
2

max,min 2 2
x y x y

xy

σ σ σ σ 
σ τ 

+ − ⎛ ⎞ 
= ± + ⎜ ⎟ 

⎝ ⎠ 

max min
max 2

σ σ τ − 
= 

2
2

max 2
x y

xy

σ σ 
τ τ 

− ⎛ ⎞ 
= + ⎜ ⎟ 

⎝ ⎠ 

45s pθ θ = ± ° 

cos 2 sin 2
2 2

x y x y
x xy

σ σ σ σ 
σ θ τ θ ′ 

+ − ⎛ ⎞ 
= + + ⎜ ⎟ 

⎝ ⎠ 

sin 2 cos 2
2

x y
x y xy

σ σ 
τ θ τ θ ′ ′ 

− ⎛ ⎞ 
= − + ⎜ ⎟ 

⎝ ⎠ 
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Example 
Determine the (a) principal stresses, (b) maximum in-plane shear 
stress and the associated normal stress.  Units: MPa 

80 

80 

50 

50 2
2

max,min 2 2
x y x y

xy

σ σ σ σ 
σ τ 

+ − ⎛ ⎞ 
= ± + ⎜ ⎟ 

⎝ ⎠ 

2
2

max 2
x y

xy

σ σ 
τ τ 

− ⎛ ⎞ 
= + ⎜ ⎟ 

⎝ ⎠ 

2
x y

ave

σ σ 
σ 

+ 
= 
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Example 
Determine the (a) principal stresses, (b) maximum in-plane shear 
stress and the associated normal stress.  Sketch the resulting stresses 
on the element and the corresponding orientation.  Units: MPa 

80 

80 

50 

50 2
tan 2 xy

p
x y

τ 
θ 

σ σ 
= 

− 

cos 2 sin 2
2 2

x y x y
y xy

σ σ σ σ 
σ θ τ θ ′ 

+ − ⎛ ⎞ 
= − − ⎜ ⎟ 

⎝ ⎠ 

cos 2 sin 2
2 2

x y x y
x xy

σ σ σ σ 
σ θ τ θ ′ 

+ − ⎛ ⎞ 
= + + ⎜ ⎟ 

⎝ ⎠ 

sin 2 cos 2
2

x y
x y xy

σ σ 
τ θ τ θ ′ ′ 

− ⎛ ⎞ 
= − + ⎜ ⎟ 

⎝ ⎠ 

2
x y

ave

σ σ 
σ 

+ 
= 
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Example 
Determine the (a) principal stresses, (b) maximum in-plane shear 
stress and the associated normal stress.  Units: MPa 

48 

48 

60 

60 

16 16 
2

2
max,min 2 2

x y x y
xy

σ σ σ σ 
σ τ 

+ − ⎛ ⎞ 
= ± + ⎜ ⎟ 

⎝ ⎠ 

2
2

max 2
x y

xy

σ σ 
τ τ 

− ⎛ ⎞ 
= + ⎜ ⎟ 

⎝ ⎠ 

2
x y

ave

σ σ 
σ 

+ 
= 
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Example 
Determine the (a) principal stresses, (b) maximum in-plane shear 
stress and the associated normal stress.  Units: psi 

2300 

2300 

8800 8800 
2

2
max,min 2 2

x y x y
xy

σ σ σ σ 
σ τ 

+ − ⎛ ⎞ 
= ± + ⎜ ⎟ 

⎝ ⎠ 

2
2

max 2
x y

xy

σ σ 
τ τ 

− ⎛ ⎞ 
= + ⎜ ⎟ 

⎝ ⎠ 

2
x y

ave

σ σ 
σ 

+ 
= 
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MOHR’S CIRCLE FOR PLANE STRESS 

2
2

2
x y

xyR
σ σ 

τ 
− ⎛ ⎞ 

= + ⎜ ⎟ 
⎝ ⎠ 2

x y
ave

σ σ 
σ 

+ 
= 

maxσ minσ 

maxσ minσ 
aveσ 

aveσ 

aveσ 

aveσ maxτ 

maxτ 

xσ xσ 

xyτ 

xyτ 
yσ 

yσ 

σ 

τ 
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Example 
Using Mohr’s circle, determine the stresses on a surface that is rotated 
30° clockwise.  Units: MPa 

80 

80 

50 

50 
2

x y
ave

σ σ 
σ 

+ 
= 

2
2

2
x y

xyR
σ σ 

τ 
− ⎛ ⎞ 

= + ⎜ ⎟ 
⎝ ⎠ 
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Example 
Using Mohr's circle, determine the (a) principal stresses, (b) maximum 
in-plane shear stress and the associated normal stress.  Units: MPa 

80 

80 

50 

50 
2

x y
ave

σ σ 
σ 

+ 
= 

2
2

2
x y

xyR
σ σ 

τ 
− ⎛ ⎞ 

= + ⎜ ⎟ 
⎝ ⎠ 
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Example 
Using Mohr's circle, determine the (a) principal stresses, (b) maximum 
in-plane shear stress and the associated normal stress.  Units: MPa 

2
x y

ave

σ σ 
σ 

+ 
= 

2
2

2
x y

xyR
σ σ 

τ 
− ⎛ ⎞ 

= + ⎜ ⎟ 
⎝ ⎠ 

48 

48 

60 

60 

16 16 
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Example 
Using Mohr's circle, determine the (a) principal stresses, (b) maximum 
in-plane shear stress and the associated normal stress.  Units: MPa 

2
x y

ave

σ σ 
σ 

+ 
= 

2
2

2
x y

xyR
σ σ 

τ 
− ⎛ ⎞ 

= + ⎜ ⎟ 
⎝ ⎠ 

20 20 

90 

90 

60 

60 
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3D APPLICATIONS OF MOHR’S CIRCLE 

34.7 

Example 
Using Mohr's circle, determine the maximum shear stress. 
(Hint: Consider both in-plane and out-of-plane shearing stresses). 
Units: MPa 

17.5 
95.3 

34.7 

σ 

τ 

17.5 

95.3 

34.7 

17.5 
100 

30 30 

100 100 

30 30 

100 
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Example 
Using Mohr's circle, determine the maximum shear stress. 
(Hint: Consider both in-plane and out-of-plane shearing stresses). 
Units: MPa 

20 20 

90 

60 

60 

90 

20 

90 

60 

46.4 

116 

46.4 

116 

σ 

τ 
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20 20 

50 

90 

60 

60 

90 

σ 

τ 

Example 
Using Mohr's circle, determine the maximum shear stress. 
(Hint: Consider both in-plane and out-of-plane shearing stresses). 
Units: MPa 

20 

90 

60 

46.4 

116 

46.4 

116 
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σ 

τ 

48 

17.5 
95.3 

34.7 

17.5 

60 

95.3 

34.7 

17.5 
100 

30 

30 

100 

Example 
Using Mohr's circle, determine the maximum shear stress. 
(Hint: Consider both in-plane and out-of-plane shearing stresses). 
Units: MPa 
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STRESSES IN THIN-WALLED PRESURE VESSELS 

Cylindrical Pressure Vessel 

σ 

τ 
1σ 

1σ 

2σ 2σ 

1
pr
t

σ = 

2 2
pr
t

σ = 

Cylindrical Pressure Vessels 



7-22 Stresses in Thin-Walled Pressure Vessels 

Spherical Pressure Vessel 

σ 

1σ 

1σ 

2σ 2σ 

τ 

1 2 2
pr
t

σ σ = = 

Spherical Pressure Vessels 

max 4
pr
t

τ = 
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Example 
The viewport is attached to the submersible with 16 bolts and has an 
internal air pressure of 95 psi.  The viewport material used has an 
allowable maximum tensile and shear stress of 700 and 400 psi 
respectively.  The inside diameter of the viewport is 18".  Determine 
the force in each bolt and the wall thickness of the viewport. 
Units: in 
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Example 
The pressure vessel has an inside diameter of 2 meters and an 
internal pressure of 3 MPa.  If the spherical ends have a wall thickness 
of 10 mm and the cylindrical portion has a wall thickness of 30 mm, 
determine the maximum normal and shear stress in each section. 
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Example
The open water tank has an inside diameter of 50 ft and is filled to a 
height of 60 ft.  Determine the minimum wall thickness due to the water 
pressure only if the allowable tensile stress is 24 ksi.
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Example 
18 mm thick plates are welded as shown to form the cylindrical 
pressure tank.  Knowing that the allowable normal stress perpendiculer 
to the weld is 60 MPa, determine the maximum allowable internal 
pressure and the height of the tank.  Units: m. 

h 

8 
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Example 
The cylindrical portion of the compressed air tank is made of 10 mm 
thick plate welded along a helix forming an angle of 45°.  Knowing that 
the allowable stress normal to the weld is 80 MPa, determine the 
largest gage pressure that can be used in the tank.  Units: m 

0.75 

0.25 

σ 

τ 
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TRANSFORMATION OF PLANE STRAIN 

cos 2 sin 2
2 2 2

x y x y xy
x

ε ε ε ε γ 
ε θ θ ′ 

+ − 
= + + 

cos 2 sin 2
2 2 2

x y x y xy
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PRINCIPAL STRAINS 
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x y x y xy

a b

ε ε ε ε γ 
ε ε 
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MOHR’S CIRCLE FOR PLANE STRAIN 

( )ε μ 

( )
2
γ μ 

2
x y
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ε ε 
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= 
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2 2
x y xyR

ε ε γ − ⎛ ⎞ ⎛ ⎞ 
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x y x y xy
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Example 
Given the strains below, determine the strains if the element is rotated 
30° counterclockwise. 

300
200

175

x

y

xy

ε μ 
ε μ 

γ μ 

= − 
= − 

= + 

cos 2 sin 2
2 2 2

x y x y xy
x

ε ε ε ε γ 
ε θ θ ′ 

+ − 
= + + 

cos 2 sin 2
2 2 2

x y x y xy
y

ε ε ε ε γ 
ε θ θ ′ 

+ − 
= − − 

( )sin 2 cos 2x y x y xyγ ε ε θ γ θ ′ ′ = − − + 

x' 
y' 

x' 
y' 
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Example 
Given the strains below, determine (a) the direction and magnitude of 
the principal strains, (b) the maximum in-plane shearing strain, (c) the 
maximum strain.  Assume plane stress. 

tan 2 xy
p

x y

γ 
θ 

ε ε 
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− 

cos 2 sin 2
2 2 2

x y x y xy
x

ε ε ε ε γ 
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MEASUREMENTS OF STRAIN; STRAIN ROSETTE 

Cylindrical Pressure Vessel 

2 2
1 1 1 1 1

2 2
2 2 2 2 2

2 2
3 3 3 3 3
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Example 
Given the following strains, determine (a) the in-plane principal strains, 
(b) the in-plane maximum shearing strain. 

2 2
1 1 1 1 1cos sin sin cosx y xyε ε θ ε θ γ θ θ = + + 

x 

y 

1ε 

2ε 3ε 
30° 

30° 

2 2
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⎝ ⎠ ⎝ ⎠ 
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Example 
Given the strain measurements below for the 30" diameter, 0.25" thick 
tank, determine the gage pressure, (b) the principal stresses and the 
maximum in-plane shearing stress. 

1ε 1

6

160
0.3
30
29 10 psiE x

ε μ 
υ 
θ 

= + 
= 
= ° 

= 

( )ε μ 

( )
2
γ μ 
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SUMMARY 

Transformation of Plane Stress 

Mohr’s Circle for Plane Stress 

Application of Mohr’s Circle to 3D Analysis 

xσ xσ 

xyτ 

xyτ 

yσ 

yσ 
xσ ′ 

xσ ′ 

x yτ ′ ′ 

x yτ ′ ′ yσ ′ 

yσ ′ 

20 20 

50 

90 

60 

60 

90 

xσ xσ 

xyτ 

xyτ 

yσ 

yσ 

σ 

τ 

σ 

τ 



7-36  

Stresses in Thin-Walled Pressure Vessels 

Measurements of Strain; Strain Rosette 

Transformation of Plane Strain 

Cylindrical Pressure Vessel 

Spherical Pressure Vessel 

SUMMARY 
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Principal Stresses under a Given 
Loading 

INTRODUCTION 
PRINCIPAL STRESSES IN A BEAM 

4 

48 

Wide Flange Stresses Principal Wide Flange 
Stresses 

Rectangular Cross-
section Stresses
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Example 
(a) Knowing that the allowable normal stress is 80 MPa and the 
allowable shear stress is 50 MPa, determine the height of the 
rectangular section if the width is 100 mm. 
Units: kN, m  

3 
BA

3 

A B

8 8 

C D 

10 

3 3 3 
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3.2 
BAA B

2 kN/m 

4 

0.8 

Example 
(a) Knowing that the allowable normal stress is 80 MPa and the 
allowable shear stress is 50 MPa, select the most economical 
wide-flange shape that should be used to support the loading shown.  
(b) Determine the principal stresses at the junction between the flange 
and web on a section just to the right of the 4 kN load.  Units: kN, m  
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A A 

250 lb/in 
3000 

Example 
(a) Knowing that the allowable normal stress is 24 ksi and the 
allowable shear stress is 15 ksi, select the most economical W8 
wide-flange shape that should be used to support the loading shown.  
(b) Determine the principal stresses at the junction between the flange 
and web.  Units: lb, in.  

48 
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STRESSES UNDER COMBINED LOADINGS 

Example 
Determine the stresses at A and B.  Units: k, k-in, in.   

1.5 

9 9 

Cross-section 

A 

B 

A 

B 

9 

2.25 2.5 

1.5 

d B.  Units: k,

A 

B 
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Example 
Determine the stresses at A.  The disk has a diameter of 4" and the 
solid shaft has a diameter of 1.8".  Units: kips, in. 

6 

6 

2.5 

8 

A 

x 

z 

y 

A 
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Example 
Determine the stresses at points A and B.  The beam is a W6x20.  
Units: kips, in. 

A B 

2

4

4

3

3

f

f

w

x

y

x

y

Area, A 5.87
Depth, d 6.20
Flange Width, b 6.02
Flange Thickness, t 0.365
Web Thickness, t 0.260

I 41.4

I 13.3

13.4

4.41

in

in

in

in

in

in

in

in

in

S

S

















W6x20 

A 

B 

4 

48 

20 

A 

B 
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Example 
Determine the principal stresses and maximum in-plane shearing 
stress at A and B.  Units: k, k-in. 

1.5 

9 

Cross-section 

A 

B 

A 

B 

9 

2.25 2.5 

s and maxim
n.

A 

B 

5.31

5.31

8.52

8.52

25.625.6 

From a previous solution:

2

2
max,min 2 2

x y x y
xy

σ σ σ σ 
σ τ 

  
   

 

2

2
max 2

x y
xy

σ σ 
τ τ 

 
  

 

2
x y

ave

σ σ 
σ 




2

2
max,min 2 2

x y x y
xy

σ σ σ σ 
σ τ 

  
   

 

2

2
max 2

x y
xy

σ σ 
τ τ 

 
  

 

2
x y

ave

σ σ 
σ 



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Example 
Determine the principal stresses and maximum in-plane shearing 
stress at A.  The disk has a diameter of 4" and the solid shaft has a 
diameter of 1.8". 

6 

6 

2.5 

8 

A 

x 

z 

y 

A 

5.69 

5.69 

4.72 

4.72 

From a previous solution: 

2

2
max,min 2 2

x y x y
xy

σ σ σ σ 
σ τ 

  
   

 

2

2
max 2

x y
xy

σ σ 
τ τ 

 
  

 

2
x y

ave

σ σ 
σ 



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Example 
Determine the principal stresses and maximum in-plane shearing 
stress at A and B.  The beam is a W6x20. 

A 
17.8 17.8 

B 

2.75 

2.75 

3.41 3.41 

From a previous solution: 

2

2
max,min 2 2

x y x y
xy

σ σ σ σ 
σ τ 

  
   

 

2

2
max 2

x y
xy

σ σ 
τ τ 

 
  

 

2
x y

ave

σ σ 
σ 




2

2
max,min 2 2

x y x y
xy

σ σ σ σ 
σ τ 

  
   

 

2

2
max 2

x y
xy

σ σ 
τ τ 

 
  

 

2
x y

ave

σ σ 
σ 




A 

B 
4 

48 

20 

A 

B
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SUMMARY 

Principal Stresses in a Beam 

4 

48 

Wide Flange Stresses Principal Wide Flange 
Stresses 

Rectangular Cross-
section Stresses



9-1 Introduction 

Chapter 9 
Deflection of Beams 

INTRODUCTION 
Deflection of Beams using Integration 

Statically Indeterminate Beams using Integration 

Deflection of Beams using Superposition 

Statically Indeterminate Beams using Superposition 

B 
A

L 
0.5L 

w 

A 

50 lb/in 

48 

B 



9-2 Equation of the Elastic Curve 

EQUATION OF THE ELASTIC CURVE 

P 

V
dx
dM

= 

dyTAN
dx

θ θ = ≅ 

1 ( )d d M x
ds dx EI
θ θ 

ρ 
= = = 

3

3

( )d y dM V x
dx EIdx EI

= = 

4

4

( )d y dV w x
dx dxEI EI

= = − 

Review, 

Noting, 
ρ ρ 

x 

y 

x dx 

2

2

( )d d y M x
dx dx EI
θ 

∴ = = 

4

4

( )d y w x
dx EI

= − 

dV w
dx

= − 
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Example 
a) Determine the equation for the vertical displacement and slope at 
any point.  b) Find the displacement and slope at B.  Use the second 
order differential equation to solve.  EI is constant. 

A 

P 

L 

B 

P 
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A 

w 

L 

B 

B 

Example 
a) Determine the equation for the vertical displacement and slope at 
any point.  b) Find the displacement and slope at B.  Use the second 
order differential equation to solve.  EI is constant. 
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A 
Mo 

L 

B 

Example 
a) Determine the equation for the vertical displacement and slope at 
any point.  b) Find the displacement and slope at B.  Use the second 
order differential equation to solve.  EI is constant. 

B 

Mo 
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A 

L 

0.5L 

B C 

Example 
Determine the vertical displacement and slope at point c.  Use the 
second order differential equation to solve.  EI is constant. 

A 

A 

0.5L 

B 

Mo 

Mo 
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Example 
Determine the vertical displacement at the center of the beam.  Use 
the second order differential equation to solve.  EI is constant. 

B 
A

L 
0.5L 

w 

A
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Example 
Determine the maximum vertical displacement of the beam.  Use the 
second order differential equation to solve.  EI is constant. 

A

B 
A

L 

ow
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Example 
Determine the maximum vertical displacement of the beam.  Use the 
second order differential equation to solve.  EI is constant. 
Units: kN, m. 

B 
A

L 

A

46

200
22.2 10 mm

E GPa
I x

= 
= 

Mo 

Mo 
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Example 
Determine the vertical displacement at C.  Use the second order 
differential equation to solve.  EI is constant. 
Units: kN, m. 

B 
A

10 

C 

1 2 

A

A

B 
2 

46

200
22.2 10 mm

E GPa
I x

= 
= 

M 
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A 

L 

B 

P 

P 

Example 
a) Determine the equation for the vertical displacement and slope at 
any point.  b) Find the displacement and slope at B.  Use the fourth 
order differential equation to solve.  EI is constant. 
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A 

w 

L 

B 

B 

Example 
a) Determine the equation for the vertical displacement and slope at 
any point.  b) Find the displacement and slope at B.  Use the fourth 
order differential equation to solve.  EI is constant. 
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A Mo 

L 

B 

Example 
a) Determine the equation for the vertical displacement and slope at 
any point.  b) Find the displacement and slope at B.  Use the fourth 
order differential equation to solve.  EI is constant. 

Mo 
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B 
A

L 
0.5L 

w 

A

Example 
a) Determine the equation for the vertical displacement and slope at 
any point.  b) Find the displacement at L/2 and the slope at A.  Use the 
fourth order differential equation to solve.  EI is constant. 
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Example 
Determine the reactions at A and B.  Use the fourth order differential 
equation to solve.  EI is constant.  Units: lb, in. 

STATICALLY INDETERMINATE BEAMS USING 
INTEGRATION 

A 

w 

L 

B 
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Example 
Determine the reactions at A and B.  Use the second order differential 
equation to solve.  EI is constant.  Units: lb, in. 

B 

A 

L 

B 

w 
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A 

w 

L 

B 

Example 
Determine the reactions at A and B.  Use the second order differential 
equation to solve.  Neglect the effect of any axial reactions.  EI is 
constant.  Units: lb, in. 

A 

w 
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Example
Determine the reactions at A and B.  Use the fourth order differential 
equation to solve.  Neglect the effect of any axial reactions.  EI is 
constant.  Units: lb, in.

A

L

B

sino
xw w

L
π⎛ ⎞= ⎜ ⎟
⎝ ⎠
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DEFLECTION OF BEAMS USING SUPERPOSITION

Example
Using superposition, determine the displacement at C.  EI is constant.  
Units: lb, in.

A

160 lb/in

120

B

A

120

B

8000

4

629 10
53.4

psi

in

E x
I
=
=

A

160 lb/in

120

B

60

8000

C
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Example
Post AC is made of steel and has a diameter of 18 mm, and BD is 
made of copper and has a diameter of 42 mm.  Determine the 
displacement of point E on the steel beam AB.  E(steel)= 200 GPa, 
E(copper)= 120 GPa.  Units: mm, kN

1000

4000

A BE

60
1000

4000

2200

A B

C D

E

60
1000

4000

A BE

E

4645.5 10 mmI x=
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Example
Knowing that each beam has a rectangular cross section as shown, 
determine the displacement at E.  E= 200GPa.  EI is constant.
Units: kN, m.

A
C

C D

1.5 1.51.41.4

4

E

160

200

Beam AC
80

100

Beam CD

C D

4

E

A
C

1.5 4.3

A
C

4.3 1.5
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Example
The horizontal beam AB rests on the two short springs with the same 
length.  The spring at A has stiffness of 250 kN/m and the spring at B 
has a stiffness of 150 kN/m.  Determine the displacement under the 
load.   Units: kN, mm. 3.7220

A B

900

C

A B

900

C

A
B

2315 10 mEI x=

3.7
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Example
Using superposition, determine the displacement at C.  EI is constant.  
Units: kN, m.

A

8

B

10

2

C

A

B

2621.4 10 mEI x=

C

10

C
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Example
The 160x200 mm rectangular beam ABC rests on a spring at B.  The 
spring at B has stiffness of 2500 kN/m.  Determine the displacement at 
C.   Units: kN, m.

A
B

C

108
2

2621.4 10 mEI x=
From a previous solution with 
point B being a rigid roller:
yc= 4.99 mm

A
B

C
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STATICALLY INDETERMINATE BEAMS USING 
SUPERPOSITION

Example
Using superposition, determine the reactions at A and B.
EI is constant.  Units: lb, in.

A

w

L

B

A

w

B

A
B
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B
A

96
48

C

50 lb/in

Example
Due to the loading and poor construction, support B settles 1/16".  
Using superposition, determine the reactions at A, B, and C.
EI is constant. Units: lb, in.

A
C

50 lb/in

A
C

4

629 10
11.3

psi

in

E x
I
=
=
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A

4000

A

Example
The W6x20 is supported at B by a 0.25" rod.  Using 
superposition, determine the force in the rod.
EI is constant. E=29E6 psi for both members.
Units: lb, in.

A

120

B

60

4000

C

80
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A

30

7
3

Example
Using superposition, determine the reactions at A and the force in the 
spring at B.  The spring constant is 1 kN/mm.  EI is constant.
Units: kN, m.

A

30

A

26100 10 mEI x=
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Example
Using superposition, determine the reactions at A and B.  Neglect the 
effect of any axial reactions.  EI is constant.  Units: kN, m.

A

2 kN/m

4

B
2

A

2 kN/m

A

A



9-29Summary

Deflection of Beams using Integration

Statically Indeterminate Beams using Integration

Deflection of Beams using Superposition

Statically Indeterminate Beams using Superposition

B
A

L
0.5L

w

A

50 lb/in

48

B

SUMMARY



10-1 Columns with Pinned-Ends 

Chapter 10 
Columns 

COLUMNS WITH PINNED-ENDS 

2

2cr
EIP

L
π 

= 

Pcr 

A 

B 

L 

A 

B B 



10-2 Columns with Pinned-Ends 

( ) 

2

2/cr
E

L r
π σ = 

L/r 

crσ 
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Example 
a) Using a factor of safety of 2.5 against buckling, determine the 
largest load the column can support before it begins to buckle.  
Consider only in-plane buckling.  b) Find the maximum load if the 
allowable axial stress is 80 MPa.  The pipe has an outside diameter of 
100 mm and a wall thickness of 6 mm.  E=200 GPa.  Units: m. 

A 

B 

4 
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Example 
Using a factor of safety of 1.85, determine the largest load the W6x20 
column can support before it begins to buckle.  Consider both in-plane 
and out of plane buckling.  E= 29E6 psi.  Units: ft. 

A 

B 

10 

A 

B 

Front View Side View 

2

4

4

3

3

f

f

w

x

y

x

y

Area, A 5.87
Depth, d 6.20
Flange Width, b 6.02
Flange Thickness, t 0.365
Web Thickness, t 0.260
I 41.4
I 13.3

13.4
4.41

in

in

in

in

in

in

in

in

in

S
S

= 
= 

= 
= 

= 

= 

= 

= 

= 

W6x20 
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Example 
Both members are identical pipe sections with an outside diameter of 
100 mm and a wall thickness of 6 mm.  Determine the largest load P 
based on in-plane buckling.  E= 200 GPa.  Units: m. 

P 

A 

B 

C 

4 

4 3 
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Example 
Find the critical buckling load for a 28 ft pin-pin columm.  The two 
W6x20 columns are spliced together to insure they work as one.  
Ignore the properties of the plates used to make the splice. 
E= 30E6 psi.  Units: ft. 

2

4

4

3

3

f

f

w

x

y

x

y

Area, A 5.87
Depth, d 6.20
Flange Width, b 6.02
Flange Thickness, t 0.365
Web Thickness, t 0.260
I 41.4
I 13.3

13.4
4.41

in

in

in

in

in

in

in

in

in

S
S

= 
= 

= 
= 

= 

= 

= 

= 

= 

W6x20 
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Example 
Determine the radius of a round column so that it has the same 
buckling capacity as that of a square 30 mm column.  Both columns 
are identical other than their cross section.  Units: mm. 

30 Sq. 
r 



10-8 Columns with other End Conditions 

COLUMNS WITH OTHER END CONDITIONS 

2

24cr
EIP
L

π 
= 

∆ 

A 

B 

Pcr 

L 

A 

B 

y A 

Pcr 
∆ 



10-9 Effective Length 

( ) ( ) 

2 2

2 2cr
e

EI EIP
kL L

π π 
= = 

Effective Length 

One end fixed, 
one end free. 
K= 2 

A 

B 

Pcr 

Pcr 

A 

B 

Both ends 
pinned. 
K= 1 

L 

Column K values 

Pcr 

A 

B 

One end fixed, 
one end pinned. 
K= 0.7 

Pcr 

A 

B 

Both ends fixed. 
K= 0.5 
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Example 
Determine the K value for each of the following conditions: 

(a) (b) (c) (d) 
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Example 
Determine the largest load the W6x20 column can support before it 
begins to buckle.  Consider both in-plane and out of plane buckling.  
E= 29E6 psi.  Units: ft. 

A 

B 

10 

B 

Front View Side View 

2

4

4

3

3

f

f

w

x

y

x

y

Area, A 5.87
Depth, d 6.20
Flange Width, b 6.02
Flange Thickness, t 0.365
Web Thickness, t 0.260
I 41.4
I 13.3

13.4
4.41

in

in

in

in

in

in

in

in

in

S
S

= 
= 

= 
= 

= 

= 

= 

= 

= 

W6x20 

A 
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Example 
Determine the largest load the W150x29.8 column can support before 
it begins to buckle.  Consider both in-plane and out of plane buckling.  
E= 200 GPa.  Units: m. 

A 

B 

4 

B 

Front View Side View 

A 

C 

1.5 

W150x29.8 
2

4

4

3

3

f

f

w
6

x
6

y

3
x

3
y

Area, A 3790
Depth, d 157
Flange Width, b 153
Flange Thickness, t 9.3
Web Thickness, t 6.6
I 17.2 10
I 5.56 10

219 10
72.7 10

mm

mm

mm

mm

mm

mm

mm

mm

mm

x
x

S x
S x

= 
= 

= 
= 

= 

= 

= 

= 

= 
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Example 
Determine the largest load the W150x29.8 column can support before 
it begins to buckle.  Consider both in-plane and out of plane buckling.  
E= 200 GPa.  Units: m. 

A 

B 

4 

B 

Front View Side View 

A 

2 

W150x29.8 
2

4

4

3

3

f

f

w
6

x
6

y

3
x

3
y

Area, A 3790
Depth, d 157
Flange Width, b 153
Flange Thickness, t 9.3
Web Thickness, t 6.6
I 17.2 10
I 5.56 10

219 10
72.7 10

mm

mm

mm

mm

mm

mm

mm

mm

mm

x
x

S x
S x

= 
= 

= 
= 

= 

= 

= 

= 

= 
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SUMMARY 

( ) ( ) 

2 2

2 2cr
e

EI EIP
kL L

π π 
= = 

One end fixed, 
one end free. 
K= 2 

A 

B 

Pcr 

Pcr 

A 

B 

Both ends 
pinned. 
K= 1 

L 

Column K values 

Pcr 

A 

B 

One end fixed, 
one end pinned. 
K= 0.7 

Pcr 

A 

B 

Both ends fixed. 
K= 0.5 
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