Chapter 6 Shearing Stresses in Beams and Thin-Walled Members

INTRODUCTION

Shearing Stresses in Beams

Shearing Forces and Stresses in Built-Up Members

Shearing Stresses in Thin-Walled Members

SHEARING STRESSES IN A BEAM

$$\tau = \frac{VQ}{Ib} = \frac{VQ}{It}$$

Shearing Stresses in a Beam

Determine the maximum shearing stress. Units: N, mm (UNO).

Determine the maximum shear stress for the 6" diameter pipe. The pipe has a wall thickness of 0.28".

Units: lb, ft.

For the W410x85 section, determine the maximum shear stress. Units: kN, m.

For the C7x9.8 channel section, determine the maximum shear stress. Units: lb, ft.

$$\overline{x} = 0.540^{in}$$

For the W310x107 section, determine the maximum shear stress. Units: kN, m.

Area, A = 13600^{mm^2} Depth, d = 311^{mm} Flange Width, b_f = 306^{mm} Flange Thickness, t_f = 17.0^{mm} Web Thickness, t_w = 10.9^{mm} I_x = $248x10^{6mm^4}$ I_y = $81.2x10^{6mm^4}$

Two rolled-steel C150x12.2 channels are welded back to back. Determine the maximum shear stress.

Units: kN, m.

$$\overline{x} = 12.7^{mm}$$

SHEARING STRESSES IN A BUILT-UP BEAM

$$\tau = \frac{VQ}{Ib} = \frac{VQ}{It}$$

The two 0.25"x0.5" strips are glued to the 3"x1.5" main member. Determine the maximum shear stress in the glue between them. Units: lb, in.

The three 0.50" thick boards are glued together using a glue with a shear capacity of 350 psi. Based on the glue capacity, compute the minimum width of the boards to resist a vertical shear force of 1500 lb. Units: lb, in.

The two beams are connected every 6" by bolts through the flanges. Determine the force in each bolt for the W6x20 built-up beam. Units: lb, ft

W6x20

Area, A = 5.87^{in^2} Depth, d = 6.20^{in} Flange Width, b_f = 6.02^{in} Flange Thickness, t_f = 0.365^{in} Web Thickness, t_w = 0.260^{in} I_x = 41.4^{in^4} I_y = 13.3^{in^4} S_x = 13.4^{in^3} S_y = 4.41^{in^3}

The two boards are glued at A and is subjected to a vertical shear force of 8 kN. Determine the shear stress in the glue. Units: kN, mm.

SHEARING STRESSES IN THIN-WALLED MEMBERS

Knowing that the vertical shear in the W150x29.8 beam is 150 kN, determine the shearing stress at (a) point A, (b) point B. Units: kN, mm.

Knowing that the vertical shear in the rectangular tube is 90 kN, determine the shearing stress at (a) point A, (b) point B. Units: kN, mm.

The three boards are glued together and the built-up member is subjected to a vertical shear force of 50000 lb. Determine the shear stress in the glue. Repeat the problem if the two horizontal boards are replaced with a single 30"x5" board. Units: lb, in.

The built-up box beam is constructed by nailing four 2"x6" (nominal size) boards together. If each nail can support a shear force of 70 lb, determine the maximum spacing s of nails at A and B. Units: lb, in.

Cross-section

Compute the shear force in each nail to insure that the beams are securely bonded to each other. Assume a shear force of 5000 lbs and that each nail is spaced every 6". Units: lb, in.

Cross-section

If each of the four welds can support 80 kN/m, determine the required length of weld. Assume a shear force of 20 kN. Units: kN, mm.

SUMMARY

Shearing Stresses in Beams

Shearing Forces and Stresses in Built-Up Members

Shearing Stresses in Thin-Walled Members

