Chapter 4 Pure Bending

INTRODUCTION

Bending Stress

Bending of Members made of Several Materials

Stress Concentrations

Introduction 4-1

Eccentric Axial Loading in a Plane of Symmetry

Unsymmetric Bending

4-2 Introduction

BENDING STRESS

Bending Stress 4-3

BENDING STRESS- continued

$$\sigma_x = -\frac{My}{I}$$

SECTION MODULUS

$$\sigma_x = -\frac{My}{I} = -\frac{M}{S}$$

Find the maximum bending stress at section a-a (3 m from A) of the W150x29.8 beam. Units: N, m.

W150x29.8

Area, $A = 3790^{mm^2}$

Depth, $d = 157^{mm}$

Flange Width, $b_f = 153^{mm}$

Flange Thickness, $t_f = 9.3^{mm}$

Web Thickness, $t_w = 6.6^{mm}$

 $I_{x} = 17.2x10^{6mm^4}$

 $I_{y} = 5.56x10^{6mm^4}$

 $S_{x} = 219x10^{3mm^3}$

 $S_{y} = 72.7 \times 10^{3mm^3}$

Find the bending stresses at the wall at points A and B for a 6" pipe with a wall thickness of 0.125". Units: lb, ft.

Find the bending stresses at the wall at points A and B for the W6x20 beam. Units: lb, ft.

W6x20

Area,
$$A = 5.87^{in^2}$$

Depth,
$$d = 6.20^{in}$$

Flange Width,
$$b_f = 6.02^{in}$$

Flange Thickness,
$$t_f = 0.365^{in}$$

Web Thickness,
$$t_w = 0.260^{in}$$

$$I_x = 41.4^{in^4}$$

$$I_y = 13.3^{in^4}$$

$$S_{\rm x} = 13.4^{in^3}$$

$$S_{y} = 4.41^{in^3}$$

Find the bending stresses at the wall at points A and B for the C6x13 beam. Units: lb, ft.

C6x13

Depth,
$$d = 6.00^{in}$$

Flange Width, $b_f = 2.16^{in}$
Flange Thickness, $t_f = 0.343^{in}$

Web Thickness,
$$t_w = 0.437^{in}$$

$$I_x = 17.4^{in^4}$$
 $I_y = 1.05^{in^4}$

Area, $A = 3.83^{in^2}$

$$S_{x} = 5.80^{in^3}$$

$$S_{y} = 0.642^{in^3}$$

$$\overline{x} = 0.514^{in}$$

Find the maximum bending stress at section a-a (3 m from A) of the W150x29.8 beam. Units: N/m, m.

W150x29.8

Area,
$$A = 3790^{mm^2}$$

Depth,
$$d = 157^{mm}$$

Flange Width,
$$b_f = 153^{mm}$$

Flange Thickness,
$$t_f = 9.3^{mm}$$

Web Thickness,
$$t_w = 6.6^{mm}$$

$$I_{x} = 17.2x10^{6mm^4}$$

$$I_{y} = 5.56x10^{6mm^4}$$

$$S_{x} = 219x10^{3mm^3}$$

$$S_{y} = 72.7 \times 10^{3mm^3}$$

The sign is subjected to a wind force of 250 lb at it's centroid 7' from the center of the column. The column has an outside diameter of 10" and a wall thickness of 0.25". Considering only this force, determine the maximum bending stress. Units: ft.

PARALLEL-AXIS THEOREM

MOMENTS OF INERTIA

PARALLEL-AXIS THEOREM

$$I_{x} = \sum (I_{x'} + Ad_{y}^{2})$$
$$I_{y} = \sum (I_{y'} + Ad_{x}^{2})$$

EXAMPLE

4-12 Parallel-Axis Theorem

The simply-supported beam below has a cross-sectional area as shown. Determine the bending stress that acts at points c and d, located at section a-a (3 m from A). Units: N/m, mm (uno).

The member is designed to resist a moment of 5 kip•in about the horizontal axis. Determine the maximum normal stress in the member for the two similar cross-sections. Units: in.

Compare the bending stresses between the two cases for a moment about the horizontal axis. Case 1 is a simple solid cross-section, whereas case 2 is made up of 3 identical boards. The 3 boards aren't connected together and simply rest on one another. Units: in.

The two beams are connected by a thin rigid plate on the top and bottom side of the flanges. Find the bending stresses at the wall at points A, B and C for the W6x20 beam. Units: lb, ft

W6x20

Area, $A = 5.87^{in^2}$

Depth, $d = 6.20^{in}$

Flange Width, $b_f = 6.02^{in}$

Flange Thickness, $t_f = 0.365^{in}$

Web Thickness, $t_w = 0.260^{in}$

 $I_x = 41.4^{in^4}$

 $I_y = 13.3^{in^4}$

 $S_{\rm x} = 13.4^{in^3}$

 $S_{y} = 4.41^{in^3}$

The two beams are connected by a thin rigid plate on the top and bottom side of the flanges. Find the bending stresses at the wall at points A, B and C for the W6x20 beam. Units: lb, ft

W6x20

Area, $A = 5.87^{in^2}$

Depth, $d = 6.20^{in}$

Flange Width, $b_f = 6.02^{in}$

Flange Thickness, $t_f = 0.365^{in}$

Web Thickness, $t_w = 0.260^{in}$

$$I_x = 41.4^{in^4}$$

$$I_y = 13.3^{in^4}$$

$$S_{\rm x} = 13.4^{in^3}$$

$$S_{y} = 4.41^{in^3}$$

The two beams are connected by bolts through the flanges. Find the bending stresses at the wall at points A and B for the W6x20 beam. Units: lb, ft

W6x20

Area, $A = 5.87^{in^2}$ Depth, $d = 6.20^{in}$ Flange Width, $b_f = 6.02^{in}$ Flange Thickness, $t_f = 0.365^{in}$ Web Thickness, $t_w = 0.260^{in}$ $I_x = 41.4^{in^4}$ $I_y = 13.3^{in^4}$ $S_x = 13.4^{in^3}$

 $S_{y} = 4.41^{in^3}$

The two beams are connected by bolts through the flanges. Find the bending stresses at the wall at points A and B for the W6x20 beam. Units: lb, ft

W6x20

Area,
$$A = 5.87^{in^2}$$

Depth, $d = 6.20^{in}$
Flange Width, $b_f = 6.02^{in}$
Flange Thickness, $t_f = 0.365^{in}$
Web Thickness, $t_w = 0.260^{in}$
 $I_x = 41.4^{in^4}$
 $I_y = 13.3^{in^4}$
 $S_x = 13.4^{in^3}$
 $S_y = 4.41^{in^3}$

The simply-supported beam below has a cross-sectional area as shown. Determine the bending stress that acts at points c and d, located at section a-a (3 m from A). Units: N/m, mm (UNO).

BENDING OF MEMBERS MADE OF SEVERAL MATERIALS

$$\sigma_{x} = -n \frac{My}{I}$$

Find the stress in each of the three metals if a moment of 12 k-in is applied about the horizontal axis.

E (aluminum)= 10E6, E(steel)= 30E6, E (brass)= 15E6 psi. Units: in.

A W150x29.8 wide flange beam is reinforced with wood planks that are securely connected to the flanges. E_{steel}/E_{wood}= 20. If the allowable stresses in the wood and steel are 4.5 MPa and 52 MPa, respectively, determine the allowable distributed load w based on section a-a (3 m from A). Units: N/m, mm (UNO).

W150x29.8

Area, $A = 3790^{mm^2}$

Depth, $d = 157^{mm}$

Flange Width, $b_f = 153^{mm}$

Flange Thickness, $t_f = 9.3^{mm}$

Web Thickness, $t_{w} = 6.6^{mm}$

 $I_{x} = 17.2x10^{6mm^4}$

 $I_{y} = 5.56x10^{6mm^4}$

 $S_{\rm x} = 219x10^{3mm^3}$

 $S_{y} = 72.7 \times 10^{3mm^3}$

Two steel plates are securely fastened to a 6"x10" wood beam. $E_{\text{steel}}/E_{\text{wood}}=20$. Knowing that the beam is bent about the horizontal axis by a 125 kip-in moment, determine the maximum stress in (a) the wood, (b) the steel. Units: in.

Determine the stress in the concrete and steel if a moment of 1500 kip-in is applied about the horizontal axis. Area of steel= 3.14 sq. in. E (steel)= 30E6 psi, E (concrete)= 3.75E6 psi. Units: in.

Cross-section

Cross-section

Determine the required steel area for the beam to be balanced. Allowable stress in the steel and concrete are 33,000 and 3,000 psi respectively.

E (steel)= 29E6 psi, E (concrete)= 3.5E6 psi. Units: in.

Cross-section

STRESS CONCENTRATIONS

Ref.: W.D. Pilkey, Peterson's Stress Concentration Factors, 2nd ed., John Wiley and Sons, New York, 1997

Stress Concentrations 4-27

For the 13 mm thick plate, determine the largest bending moment that can be applied if the allowable bending stress is 90 MPa. Units: mm.

Stress-concentration factors for flat bars with fillets under pure bending

Ref.: W.D. Pilkey, *Peterson's Stress Concentration Factors*, 2nd ed., John Wiley and Sons, New York, 1997

For the 7/8" thick plate, determine the largest bending moment that can be applied if the allowable bending stress is 24,000 psi. Units: in.

Stress-concentration factors for flat bars with groves under pure bending

Ref.: W.D. Pilkey, *Peterson's Stress Concentration Factors*, 2nd ed., John Wiley and Sons, New York, 1997

ECCENTRIC AXIAL LOADING IN A PLANE OF SYMMETRY

In general,

$$\sigma_x = \frac{P}{A} + \frac{My}{I}$$

For the solid rectangular bar, determine the largest load P that can be applied based on a maximum normal stress of 130 MPa. Ignore any stress concentrations. Units: mm.

The three loads are applied at the end of the W6x20 beam. Find the normal stress at the wall at point A for the beam, (a) if all three loads are applied, (b) the bottom load is removed. Units: lb, ft.

The 100 mm diameter solid circular bar has an eccentric load P applied. Determine the maximum location x that the load can be placed without inducing any tensile stresses. Units: mm.

Compute the maximum tension and compression stresses located at

section a-a. Units: N, mm (UNO).

UNSYMMETRIC BENDING

$$\sigma_x = -\frac{M_z y}{I_z} + \frac{M_y z}{I_y}$$

$$\sigma_x = \frac{P}{A} - \frac{M_z y}{I_z} + \frac{M_y z}{I_y}$$

For the W6x20 section, determine the normal stresses at A and B.

Units: kip•in.

W6x20

Area,
$$A = 5.87^{in^2}$$

Depth,
$$d = 6.20^{in}$$

Flange Width,
$$b_f = 6.02^{in}$$

Flange Thickness,
$$t_f = 0.365^{in}$$

Web Thickness,
$$t_w = 0.260^{in}$$

$$I_x = 41.4^{in^4}$$

$$I_y = 13.3^{in^4}$$

$$S_{\rm x} = 13.4^{in^3}$$

$$S_{y} = 4.41^{in^3}$$

For the WT18x150 section, determine the normal stresses at A, B and

C. Units: k•in.

WT18x150

Area,
$$A = 44.10^{in^2}$$

Depth,
$$d = 18.4^{in}$$

Flange Width,
$$b_f = 16.7^{in}$$

Flange Thickness,
$$t_f = 1.68^{in}$$

Web Thickness,
$$t_w = 0.945^{in}$$

$$I_x = 1230^{in^4}$$

$$I_y = 648^{in^4}$$

$$S_{x} = 86.1^{in^3}$$

$$S_{y} = 77.8^{in^3}$$

$$\overline{y} = 4.13^{in}$$

For the channel section, determine the normal stresses at A and B. Units: kN•m, mm.

For the L76x76x12.7 angle section, determine the normal stresses at A and B. Units: N•m.

SUMMARY

Bending Stress

$$\sigma_x = -\frac{My}{I} = -\frac{M}{S}$$

Bending of Members made of Several Materials

Stress Concentrations

4-40

SUMMARY

Eccentric Axial Loading in a Plane of Symmetry

Unsymmetric Bending

Summary 4-41